低速大转矩永磁电机技术研究报告文档格式.docx

上传人:b****5 文档编号:21469789 上传时间:2023-01-30 格式:DOCX 页数:13 大小:190.45KB
下载 相关 举报
低速大转矩永磁电机技术研究报告文档格式.docx_第1页
第1页 / 共13页
低速大转矩永磁电机技术研究报告文档格式.docx_第2页
第2页 / 共13页
低速大转矩永磁电机技术研究报告文档格式.docx_第3页
第3页 / 共13页
低速大转矩永磁电机技术研究报告文档格式.docx_第4页
第4页 / 共13页
低速大转矩永磁电机技术研究报告文档格式.docx_第5页
第5页 / 共13页
点击查看更多>>
下载资源
资源描述

低速大转矩永磁电机技术研究报告文档格式.docx

《低速大转矩永磁电机技术研究报告文档格式.docx》由会员分享,可在线阅读,更多相关《低速大转矩永磁电机技术研究报告文档格式.docx(13页珍藏版)》请在冰豆网上搜索。

低速大转矩永磁电机技术研究报告文档格式.docx

瑞士的P.Lampola等人,分析了多极低速PMSM,但其样机仅局限于12极以内的情况。

综观上述文献报导,其共同之处在于没有注意到PMSM在现代正弦波脉宽调制(SPWM)电源供电情况下,如何从低速大转矩传动系统最佳的角度来研究PMSM的分析和设计问题,并且其分析和解决问题的出发点都是从针对电机的转矩,而忽视了产生转矩脉振的根本原因,即电机内电势波形的设计和研究。

本项目研究低速大转矩稀土永磁同步电动机,与电力电子技术、高集成的机电一体化技术一同,组成的电子-电气-机械一体化驱动技术的理论和技术。

从低速大转矩传动系统最优化的角度,重点解决低速大转矩稀土永磁同步电动机的最优化设计问题;

消除低频转矩脉动问题;

转子嵌入式磁极结构的漏磁问题。

并成功地在工厂大机械无齿轮传动系统中得到应用。

2.低速大转矩稀土永磁同步电机的研制原理

2.1SPWM电源供电下PMSM的数学模型

现代变频器几乎全部采用SPWM的电压输出波形,它是利用标准的正弦波与三角波经调制而成。

理论分析和实验均表明,SPWM输出电压波形中低次谐波之和为零,或者说SPWM的输出电压是一个标准的正弦波。

将三相SPWM的输出电压,采用功率不变约束的dq0坐标变换后供电给PMSM的电压、磁链和电磁转矩方程,在dq0轴坐标系中,写成空间矢量形式为[5]:

   

(1)

   

(2)

   (3)

  (4)

    (5)

式中

为SPWM电源的输出三相对称电压有效值(V);

为SPWM电源在dqo坐标下的分量,对于三相对称系统

是以电弧度计的转子磁极轴线相对定子u相轴线沿气隙圆周的夹角,

为初始位置角,

为定子电角频率;

为电机定子绕组相电阻

为dqo坐标下电流和磁链的空间矢量;

p为电机极对数;

为PMSM的电磁转矩。

PMSM的空间矢量图,如图1所示。

从图1中可以看出,定子电流空间矢量

与定子磁链空间矢量

同相,而定子磁链与永磁体产生的气隙磁链

间的空间电角度为

,且

(6)

(7)

将(6)(7)式代入(5)可得

(8)

分别为PMSM的直轴和交轴同步电感。

图1PMSM空间矢量图

由上式可以看出,PMSM电磁转矩含有两个分量,第一项为永磁转矩,第2项磁阻转矩。

对于PMSM,一般

,因此,为充分利用磁阻转矩,在控制上要使直轴电流分量为负值,即

在采用功率不变约束的坐标变换后,dqo轴系统中的各量(电压、电流、磁链)等于uvw轴系统中各相应量的相有效值的

倍,(m为相数)。

电磁转矩(8)的稳态表达式可为

(9)

为dqo坐标下永磁体磁场在PMSM电枢绕组中产生的内电势,

分别为PMSM的直轴和交轴同步电抗。

(2)和(9)式可见,要消除PMSM低频脉振转矩脉动,只要能使其内电势的波形为标准的正弦波,即可使电流的波形也为正弦波。

当然,若做到了这一点,也就实现了消除低频转矩脉振的目的。

2.2低速大扭矩PMSM的设计研究

从电磁感应定律

可知,要使电机内电势波形正弦,其实就是如何使产生内电势的磁场波形正弦的问题。

从电机的基本理论可知,影响磁场波形的因素除电机设计的共同问题外,对于PMSM可主要可归纳为转子永磁体结构形式的选取;

主磁极极弧系数的选择;

电枢绕组的排布方式和定子齿谐波影响的消除等四个方面。

2.2.1转子永磁体结构形式的选取

PMSM的磁极形式是多种多样的,按永磁体激励的方向可分为径向结构和切向结构,按安装形式可以分为外贴式和内置式,其基本形式如图2所示。

从SPWM电源与PMSM匹配运行所组成的低速大扭矩驱动系统最优化观点出发,为保证驱动系统有足够的线性调节范围,SPWM变频器额定输出频率应尽可能高(一般取25Hz以上);

为降低变频器的成本和损耗,要求变频器的额定输出电流要尽可能小。

因此,电机在设计上要采用多极结构,以降低额定同步转速;

在大扭矩情况下,减小电机的额定电流,则必须使每极具有足够强的激励磁场。

永磁体提供磁场的强度是与其激励面积直接相关的,而对于图2(a)(b)所示的径向磁极结构,要在中小型电机中采用多极是不可能在有限的空间内获得足够激励面积的。

因此,低速大扭矩PMSM采用切向磁极结构几乎是惟一的选择。

采用图2(c)的切向磁极结构,每极激励面积是相邻两个永磁体槽深方向面积之和。

可以克服径向结构在多极时的每极激励面积不足的缺点,方便地根据需要通过调整永磁体槽深来选择激励面积的大小。

但由此带来的问题是,如何通过合理的转子隔磁回路设计,减小永磁体的底部漏磁问题。

图3是利用有限元分析,得出的不同转子隔磁回路结构时,由永磁体激励的磁场静态分布情况。

图3是在永磁体尺寸相同,仅改变转子隔磁回路结构的情况下得到。

尽管图3(a)具有对称的机械结构,转子冲片便于利用单冲的方式加工,但由于机械连接与强度的需要,磁极与极轭的连接部分,使永磁体产生的磁通近1/3从该部分漏掉,严重降低了永磁材料的利用率。

图3(b)是将永磁体底部的隔磁回路完全置于同一磁极下(如N极),利用另一磁极(S极)的同极相斥原理,达到提高永磁材料利用率的目的。

从图3(b)可见,永磁体底部漏磁几乎完全消除,仅剩的漏磁是由于定子采用分数槽引起的不对称所置。

图3结果意味着,在永磁体尺寸相同的情况下,(b)较(a)的永磁材料利用率提高了1/3。

2.2.2主磁极极弧系数的选择

在同步电机的设计中,极弧系数的选取对电机电枢绕组内电势波形以及电机出力大小有着重要的影响。

在低速大扭矩驱动系统中,采用PMSM的优点之一是可以通过选择适当的极弧系数来消除某次谐波对电枢绕组内电势波形的影响。

根据电机理论,图2-a所示矩形波磁密分布用Fourier级数分解成空间各次谐波的数学表达式为

(10)

式中

气隙磁密的幅值(T);

k为奇数。

若通过适当地调整漏磁的大小和选择合适的极弧系数,使气隙磁密的波形呈图2-b所示的准梯形波分布时,则用Fourier级数分解成空间各次谐波的数学表达式变为

(11)

是主磁极极弧短距角的一半(

)。

比较式(10)和(11),式(11)是式(10)的

倍,这意味着对于基波的削弱仅为

倍,在

时其值近似为1;

而对各次谐波却减小为(10)式的1/k倍。

并且完全可以通过令

来消除某一特定的谐波。

图4气隙磁场为矩形波和准梯形波时沿气隙圆周的电弧度分布

从电机理论可知,能被3整除的奇次谐波可以通过三相对称绕组的联接消除,在电机的设计中一般最关心的是5次和7次谐波的消弱。

因此,理想的选择是

(12)

2.2.3电枢绕组的排布方式

在一般的交流电机设计中,可以通过电机定子绕组的分布和短距来消除谐波。

但在采用了多极的低速中小型电机中,已经不可能有足够的电枢绕组槽,来供分布使用。

采用整距集中绕组显然对电枢绕组内电势波形正弦化不利。

因此,采用分数槽绕组几乎是惟一的选择。

根据电机设计基本理论[7],分数槽绕组不但可以有效地消弱电枢绕组内电势中的高次谐波,而且对于

(13)

齿谐波电势的次数

m电枢绕组的相数

q电枢绕组每极每相槽数

次的齿谐波同样有消除作用。

从提高绕组利用系数和消除主要次谐波的观点出发,分数槽绕组的实际线圈跨距应该采用(14)式取整短距的方法确定。

(14)

式中Q电枢绕组的槽数;

p为电机极对数。

2.2.4齿谐波影响的消除

在低速大扭矩驱动系统中,气隙齿谐波磁场对低频转矩脉动的影响显得尤为突出,必须彻底消除。

在异步电动机中,通常采用转子斜槽的方法来消除齿谐波的影响。

在PMSM中,可以通过采用分数槽电枢绕组来部分地消除齿谐波的影响。

但要彻底消除齿谐波可能造成的低频转矩脉动和电磁噪声,仍有必要采用斜槽方式。

由于PMSM为了降低永磁体的造价,一般是规则的长方体,采用转子斜槽会给永磁体安装带来不必要的麻烦。

因此,只有采用定子斜槽的工艺。

理论分析表明,斜一个定子槽就可以消除齿谐波。

但考虑到PMSM的极弧系数一般较异步电动机的小,磁极的边缘效应也要比异步电动机的强,所以理想的斜槽数应该是

(15)

定子槽两端沿气隙圆周扭转的弧长;

定子槽沿气隙圆周的槽距弧长。

2.3技术质量指标

稀土高效永磁电机功率等级和安装尺寸符合1EC标准,其对应关系与国际上较有影响的德国西门子D1N42673标准一致,也与Y系列电机一致,这样既有利于稀土永磁电机出口,也有利于稀土永磁电机在国内市场上逐步取代进口电机。

1、绝缘等级

稀土高效永磁电机采用F级绝缘,温升按B级考核,提高了永磁电机可靠性。

由于采用了F级绝缘,在设计时有足够的温升裕度,有利于发电机在使用环境十分恶劣情况下保证正常运转,增加了发电机运转的可靠性。

2、防护等级

稀土高效永磁电机通过对结构的改进(适当增加端盖与转轴配合面的长度,在轴承外盖与转轴的配合处增加橡皮密封圈等),使发电机的防护等级提高到1P55,提高了发电机的使用可靠性。

3、噪声和振动

稀土高效永磁电机通过在电磁和结构上的各种措施改进,如选择适当的槽配合和槽斜度,增加机座和端盖的刚度,提高端盖轴承室和转轴轴承档加工精度,改进风扇和风罩的结构等,使稀土高效永磁电机的噪声和振动得到有效控制。

4、性能要求

永磁电机性能

参数(%)

额定输出量

1/4

1/2

3/4

4/4

5/4

η设计值

91.0

93.5+

94.5+

94.0+

93.5

η最小值

92.5

93.0

cosφ设计值

0.50

0.73+

0.81+

0.84+

0.85

cosφ最小值

0.69

0.77

0.80

5、电机性能对比

满载效率

堵转转矩/额定转矩

牵入转矩/额定转矩

低速大转矩Y

-250-6

83.5

>

3

0.8

一般永磁电机

80

1.8

0.5

2.4结论

在低速大扭矩驱动系统中,采用SPWM供电下的PMSM驱动模式,与传统的电机-减速机模式相比具有明显的优势,在驱动系统的传输性能方面可以实现高效高力能密度;

在控制性能方面,可以实现最佳负载角控制。

要消除低频转矩脉动的影响,在低速大扭矩PMSM的设计中,必须使电枢内电势的波形正弦化。

实现内电势波形正弦化的四个要点是:

[1]采用切向磁极结构,并合理地调节漏磁的大小;

[2]合理选择主磁极极弧系数;

[3]定子采用分数槽绕组;

[4]定子斜槽。

3.与国外同类技术比较

目前,低速大转矩永磁同步电动机主要应用在无齿轮电梯的曳引传动中。

在该技术领域中,代表当代国际先进水平的产品是日本和德国的几家公司,其中在电机方面日本以安川公司,德国以威特公司为代表。

本项成果与日本安川和德国威特公司相同规格产品(额定转矩:

580Nm,额定转速:

163rpm,额定功率:

10Kw)的综合对比如下表1所示。

从对比可见,本项技术成果在性能和价格方面都比当代国际先进水平有优势

公司

效率

功率因数

最低允许频率

Hz

重量

Kg

噪音

dB

价格

万元

日本安川

0.9

0.89

2

750

<

60

4.8

德国威特

2.5

760

5.2

沈阳钰霖

0.91

0.92

0.2

770

58

2.3

4.成果的创造性、先进性

成果的创造性主要体现在:

[1]在低速大转矩无齿轮传动中,消除了低频转矩脉动。

使电机保持平稳运行的最低频率下降至0.2Hz,是日本技术的十分之一。

[2]有效地消除了电机中的磁场谐波,使电机内电势的波形畸变率低于2%,比国家要求的电网波形畸变率5%指标低3个百分点。

[3]由于采用了基于人工智能的电子-电气-机械一体化设计,使电机从系统全局最优化观点设计,所以效率和功率因数略高于日本和德国的水平。

先进性体现在:

[1]理论上,利用电子-电气-机械一体化最优观点进行系统设计,突破了传统的三个学科界限。

[2]产品的整体性能达到或超过了国外先进水平,效率高1个百分点,功率因数高2个百分点,最低允许频率优越10倍,并且噪音低,价格是国外的48%。

因此,性价比是国外先进水平的2倍以上。

5.作用意义(直接经济效益和社会意义)

大力应用新型永磁材料,将我国资源优势转化为产业优势,能带动高新技术产业及相关产业的迅速发展,形成国民经济新的增长点。

因此,高效稀土永磁电动机是一种市场看好,应用潜力巨大的产业。

高效稀土永磁同步电动机是一种高效节能产品,平均节能率高达25%以上,部分专用电机平均节电率高达30—40%左右,而且可以做到价格合理。

尤其是在低速大转矩传动中,取消机械减速机,实现无齿轮传动是时代的要求,发展的需要。

我国开发的高效低速大转矩稀土永磁同步电动机,在国际市场有极强的竞争力。

据电力部门估算,石油,矿山等行业五六十年代的老设备约占1/3,其本身运行效率只有30—40%,系统运行效率大约为20%。

齿轮箱年维修费用大,若采用低速大转矩稀土永磁同步电动机,电机的成本将增加40%,而运行效率可提高50—65%,如果这些电机更新换代没那么将有一个很大的市场空间。

6.推广应用的范围、条件和前景以及存在的问题和改进意见

稀土永磁材料的开发的稀土电机具有中国特色,不仅居世界先进水平,而且在大功率超高效率等方面居国际领先地位。

我国稀土电机的技术水平超过美国和欧洲国家对电机产品的节能认证标准,且我国电机生产厂家众多,忠孝机电产品户口较多。

我国开发稀土电机具有技术、市场两方面的有利因素,竞争优势明显。

目前,全国每年生产各种电机约3600万千瓦,稀土永磁电机在新年息产业、机电一体化、汽车、摩托车、冶金矿山设备、风机,水泵等都有广泛应用前景。

如每年使用钕铁硼磁体600~800吨,生产300万千瓦稀土永磁电机,产值6亿元,可为国家节省电力投资6亿元,节省电费2亿元。

我国50年代至60年代车生产的J,J0系列电机、体积大、绝缘性能差,效率低,据统计还具有总装机容量的10%~15%,即达3000~4500万千瓦。

60年代至70年代推广的J2、J02系列电机,起动性能差,效率也较低,这类产品约占60%~70%,即达2亿千瓦左右,如用稀土永磁电机代替,每年更新3000万千瓦,每年可增产值60亿元,可是几百个电机厂从停产、半停产困境中摆脱出来。

所以本产品市场发展潜力巨大。

项目建成后达产年可实现销售收入6023万元,出口创汇300万美元,利润总额1531万元,销售税金及附加445万元,全部投资每部收益率(税后)为41.98%,投资回收期为3.68年,项目具有较好的收益及投资回收能力。

参考文献

[1]J.Salo,T.Heikkilä

andJ.Pyrhö

nen,“NewLow-SpeedHigh-TorquePermanentMagnetSynchronousMachineWithBuriedMagnets,”ProceedingsofICEM’200028-30AugustEspooFinland,pp.1246-1250.

[2]NicolaBianchi,SilverioBolognani,“ReducingTorqueRippleinPMSynchronousMotorbyPole-Shifting”.ProceedingsofICEM’200028-30AugustEspooFinland,pp.1222-1226.

[3]N.Bianchi,S.Cervaro,andL.Malesani,“CurrentShapesforMinimizingTorqueRippleinSPMMotors”.ProceedingsofICEM’200028-30AugustEspooFinland,pp.1237-1241.

[4]P.Lampola,P.Saransaari,“AnalysisofaMulti-pole,Low-SpeedPermanent-MagnetSynchronousMachine”.ProceedingsofICEM’200028-30AugustEspooFinland,pp.1251-1255

[5]MorimotoS.,“ServoDriveSystemandControlCharacteristicsofSalientPolePermanentMagnetSynchronousMotor,”IEEETrans.IA.1993,29

(2):

338~343.

[6]唐任远等著.现代永磁电机的理论与设计.北京:

机械工业出版社,1997.

[7]程福秀,林金铭主编.现代电机设计.北京:

机械工业出版社,1993.

[8]张炳义,冯桂宏,王凤翔,王益全,王丽峰.SPWM供电下低速大扭矩永磁同步电动机的设计特点.电工技术学报,2001年第6期,85-90。

[9]ZhangBingyi,FengGuihong,WangFengxiang,WangYiquan,WangLifeng.OptimizedDesignofInnerPotentialWaveformofPMSMforLow-Speed&

High-TorqueDriveSystems.ProceedingsofPowerCon’2002,Kunming.

[10]ZhangBingyi,FengGuihong,WangFengxiang,WangYiquan,WangLifeng.DesignPrinciplesofLow-SpeedHigh-TorquePMSMotorwithSPWMInverterPowerSupply.ProceedingsofCICEM’2001,Shenyang,828~830.

[11]ZhangBingyi,Wangyiquan,FengGuihong,SunGuanggui,WangXiaofan.ParameterCalculationofIrregularPhaseBeltWindingsforChangeable-PoleMotorsBasedonSlotCurrentAnalysis.ICEMS’2003,Beijing.

[14]ZhangBingyi,WangFengxiang,FengGuihong.Auto-variablespeedsystemofhookdrivingmotorforlargetowercrane,ProceedingsofCICEM’99,Xian.1999.784-787.

[15]ZhangBingyi,WangFengxiang,FengGuihong.Analysisanddesignofatransformerwithmediumfrequencysquarewavevoltagepowersupply,ProceedingsofICEM’2000,Finland.980-984.

[16]ZhangBingyi,WangFengxiang,FengGuihong.Amedium-frequencyinductionheaterfordevelopmentofviscousandhigh-solidifyingoildeposits,ProceedingsofIPEMC’2000,Beijing,875-879.收入ISTP

[12]GaoGuoqiang,WangFengxiang,ZhangBingyi.Anewtorqueprotectorforheavytowercrane,ProceedingsofCICEM’99,Xian345~348.

[13]FengGuihong,WangFengxiang,ZhangBingyi.Dynamicperformancesimulationofamagneticallycontrolledreactor,ProceedingsofCICEM’99,Xian,380~383.

[14]FengGuihong,WangLifeng,ZhangBingyi,SunGuanggui.StaticMagneticFieldAnalysisofLow-speedandHigh-torque

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 表格模板 > 合同协议

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1