初中数学学习知识点总结归纳docWord格式.docx
《初中数学学习知识点总结归纳docWord格式.docx》由会员分享,可在线阅读,更多相关《初中数学学习知识点总结归纳docWord格式.docx(34页珍藏版)》请在冰豆网上搜索。
④负有理数、0统称为非正有理数
数轴
⒈数轴的概念
规定了原点,正方向,单位长度的直线叫做数轴。
⑴数轴是一条向两端无限延伸的直线;
⑵原点、正方向、单位长度是数轴的三要素,
三者缺一不可;
⑶同一数轴上的单位长度要统一;
⑷数轴的三要素都是根据实际需要规定的。
2.数轴上的点与有理数的关系
⑴所有的有理数都可以用数轴上的点来表示,正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,0用原点表示。
⑵所有的有理数都可以用数轴上的点表示出来,但数轴上的点不都表示有理数,也就是说,
有理数与数轴上的点不是一一对应关系。
(如,数轴上的点π不是有理数)
3.利用数轴表示两数大小⑴在数轴上数的大小比较,右边的数总比左边的数大;
⑵正数都大于0,负数都小于0,正数大于负数;
⑶两个负数比较,距离原点远的数比距离原点近的数小。
4.数轴上特殊的最大(小)数
⑴最小的自然数是0,无最大的自然数;
⑵最小的正整数是1,无最大的正整数;
⑶最大的负整数是-1,无最小的负整数
5.a可以表示什么数
⑴a>
0表示a是正数;
反之,a是正数,则a>
0;
⑵a<
0表示a是负数;
反之,a是负数,则a<
⑶a=0表示a是0;
反之,a是0,,则a=0
6.数轴上点的移动规律
根据点的移动,向左移动几个单位长度则减去几,向右移动几个单位长度则加上几,从而得
到所需的点的位置。
相反数
⒈相反数
只有符号不同的两个数叫做互为相反数,其中一个是另一个的相反数,0的相反数是0。
注意:
⑴相反数是成对出现的;
⑵相反数只有符号不同,若一个为正,则另一个为负;
⑶0的相反数是它本身;
相反数为本身的数是0。
2.相反数的性质与判定⑴任何数都有相反数,且只有一个;
⑵0的相反数是0;
⑶互为相反数的两数和为0,和为0的两数互为相反数,即a,b互为相反数,则a+b=0
3.相反数的几何意义
在数轴上与原点距离相等的两点表示的两个数,是互为相反数;
互为相反数的两个数,在数
轴上的对应点(0除外)在原点两旁,并且与原点的距离相等。
0的相反数对应原点;
原点
表示0的相反数。
说明:
在数轴上,表示互为相反数的两个点关于原点对称。
4.相反数的求法
⑴求一个数的相反数,只要在它的前面添上负号“-”即可求得(如:
5的相反数是-5);
⑵求多个数的和或差的相反数是,要用括号括起来再添“-”,然后化简(如;
5a+b的相反
数是-(5a+b)。
化简得-5a-b);
⑶求前面带“-”的单个数,也应先用括号括起来再添“-”,然后化简(如:
-5的相反数是-
(-5),化简得5)
5.相反数的表示方法
⑴一般地,数a的相反数是-a,其中a是任意有理数,可以是正数、负数或0。
当a>
0时,-a<
0(正数的相反数是负数)
当a<
0时,-a>
0(负数的相反数是正数)
当a=0时,-a=0,(0的相反数是0)
6.多重符号的化简
多重符号的化简规律:
“+”号的个数不影响化简的结果,可以直接省略;
“-”号的个数决定
最后化简结果;
即:
“-”的个数是奇数时,结果为负,“-”的个数是偶数时,结果为正。
绝对值
⒈绝对值的几何定义
一般地,数轴上表示数a的点与原点的距离叫做a的绝对值,记作|a|。
2.绝对值的代数定义
⑴一个正数的绝对值是它本身;
⑵一个负数的绝对值是它的相反数;
⑶0的绝对值是0.
可用字母表示为:
①如果a>
0,那么|a|=a;
②如果a<
0,那么|a|=-a;
③如果a=0,那么|a|=0。
可归纳为①:
a≥0,<
═>
|a|=a(非负数的绝对值等于本身;
绝对值等于本身的数是非负
数。
)
②a≤0,<
═>
|a|=-a(非正数的绝对值等于其相反数;
绝对值等于其相反数的数是非正数。
)
3.绝对值的性质
任何一个有理数的绝对值都是非负数,也就是说绝对值具有非负性。
所以,a取任何有理数,
都有|a|≥0。
即⑴0的绝对值是0;
绝对值是0的数是0.即:
a=0<
═>
|a|=0;
⑵一个数的绝对值是非负数,绝对值最小的数是0.即:
|a|≥0;
⑶任何数的绝对值都不小于原数。
|a|≥a;
⑷绝对值是相同正数的数有两个,它们互为相反数。
即:
若|x|=a(a>
0),则x=±
a;
⑸互为相反数的两数的绝对值相等。
|-a|=|a|或若a+b=0,则|a|=|b|;
⑹绝对值相等的两数相等或互为相反数。
|a|=|b|,则a=b或a=-b;
⑺若几个数的绝对值的和等于0,则这几个数就同时为0。
即|a|+|b|=0,则a=0且
b=0。
(非负数的常用性质:
若几个非负数的和为0,则有且只有这几个非负数同时为0)
4.有理数大小的比较⑴利用数轴比较两个数的大小:
数轴上的两个数相比较,左边的总比右边的小;
⑵利用绝对值比较两个负数的大小:
两个负数比较大小,绝对值大的反而小;
异号两数比较大小,正数大于负数。
5.绝对值的化简
①当a≥0时,|a|=a;
②当a≤0时,|a|=-a
6.已知一个数的绝对值,求这个数
一个数a的绝对值就是数轴上表示数a的点到原点的距离,一般地,绝对值为同一个正数的
有理数有两个,它们互为相反数,绝对值为0的数是0,没有绝对值为负数的数。
有理数的加减法
1.有理数的加法法则⑴同号两数相加,取相同的符号,并把绝对值相加;
⑵绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;
⑶互为相反数的两数相加,和为零;
⑷一个数与零相加,仍得这个数。
2.有理数加法的运算律
⑴加法交换律:
a+b=b+a
⑵加法结合律:
(a+b)+c=a+(b+c)
在运用运算律时,一定要根据需要灵活运用,以达到化简的目的,通常有下列规律:
①互为相反数的两个数先相加——“相反数结合法”;
②符号相同的两个数先相加——“同号结合法”;
③分母相同的数先相加——“同分母结合法”;
④几个数相加得到整数,先相加——“凑整法”;
⑤整数与整数、小数与小数相加——“同形结合法”。
3.加法性质
一个数加正数后的和比原数大;
加负数后的和比原数小;
加0后的和等于原数。
⑴当b>
0时,a+b>
a⑵当b<
0时,a+b<
a⑶当b=0时,a+b=a
4.有理数减法法则
减去一个数,等于加上这个数的相反数。
用字母表示为:
a-b=a+(-b)。
5.有理数加减法统一成加法的意义
在有理数加减法混合运算中,根据有理数减法法则,可以将减法转化成加法后,再按照加法
法则进行计算。
在和式里,通常把各个加数的括号和它前面的加号省略不写,写成省略加号的和的形式。
如:
(-8)+(-7)+(-6)+(+5)=-8-7-6+5.
和式的读法:
①按这个式子表示的意义读作“负8、负7、负6、正5的和”
②按运算意义读作“负8减7减6加5”
6.有理数加减混合运算中运用结合律时的一些技巧:
Ⅰ.把符号相同的加数相结合(同号结合法)
(-33)-(-18)+(-15)-(+1)+(+23)
原式=-33+(+18)+(-15)+(-1)+(+23)
(将减法转换成加法)
=-33+18-15-1+23
(省略加号和括号)
=(-33-15-1)+(18+23)
(把符号相同的加数相结合)
=-49+41
(运用加法法则一进行运算)
=-8
(运用加法法则二进行运算)
Ⅱ.把和为整数的加数相结合
(凑整法)
(+6.6)+(-5.2)-(-3.8)+(-2.6)-(+4.8)
原式=(+6.6)+(-5.2)+(+3.8)+(-2.6)+(-4.8)
=6.6-5.2+3.8-2.6-4.8
=(6.6-2.6)+(-5.2-4.8)+3.8
(把和为整数的加数相结合)
=4-10+3.8
(运用加法法则进行运算)
=7.8-10
(把符号相同的加数相结合,并进行运算)
=-2.2
(得出结论)
Ⅲ.把分母相同或便于通分的加数相结合(同分母结合法)
-3-1+3-2+1-7
524528
原式=(-
3-
2)+(-
1+1)+(+
7)
5
2
4
8
=-1+0-1
=-1
1
Ⅳ.既有小数又有分数的运算要统一后再结合(先统一后结合)
(+0.125)-(-3
3)+(-3
1)-(-10
2)-(+1.25)
3
原式=(+1)+(+3
1)+(+10
2)+(-1
1)
=+3
-3
+10
-1
=(33-11)+(1-31)+102
44883
=21
-3+102
=-3+13
=101
6
Ⅴ.把带分数拆分后再结合(先拆分后结合)
-31+106-121+47
5112215
原式=(-3+10-12+4)+(-1+7)+(6-1)
5151122
411
=-1++
815
-7
30
Ⅵ.分合
2-3-4+5+6-7-8+9⋯+66-67-68+69
原式=(2-3-4+5)+(6-7-8+9)+⋯+(66-67-68+69)
=0
Ⅶ.先拆后合
(1+3+5+7⋯+99)-(2+4+6+8⋯+100)
有理数的乘除法
1.有理数的乘法法
法一:
两数相乘,同号得正,异号得,并把相乘;
(“同号得正,异号得”指
“两数相乘”的情况,如果因数超两个,就必运用法三)
法二:
任何数同0相乘,都得0;
法三:
几个不是0的数相乘,因数的个数是偶数,是正数;
因数的个数是奇数,
是数;
法四:
几个数相乘,如果其中有因数0,等于0.
2.倒数
乘积是1的两个数互为倒数,其中一个数叫做另一个数的倒数,用式子表示为a·
1=1(a
a
≠0),就是说a和1互为倒数,即a是1的倒数,1是a的倒数。
aaa
①0没有倒数;
②求假分数或真分数的倒数,只要把这个分数的分子、分母点颠倒位置即可;
求带分数的倒
数时,先把带分数化为假分数,再把分子、分母颠倒位置;
③正数的倒数是正数,负数的倒数是负数。
(求一个数的倒数,不改变这个数的性质);
④倒数等于它本身的数是1或-1,不包括0。
3.有理数的乘法运算律
⑴乘法交换律:
一般地,有理数乘法中,两个数相乘,交换因数的位置,积相等。
即ab=ba
⑵乘法结合律:
三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。
即
(ab)c=a(bc).
⑶乘法分配律:
一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,在
把积相加。
即a(b+c)=ab+ac
4.有理数的除法法则
(1)除以一个不等0的数,等于乘以这个数的倒数。
(2)两数相除,同号得正,异号得负,并把绝对值相除。
0除以任何一个不等于0的数,
都得0
5.有理数的乘除混合运算
(1)乘除混合运算往往先将除法化成乘法,然后确定积的符号,最后求出结果。
(2)有理数的加减乘除混合运算,如无括号指出先做什么运算,则按照‘先乘除,后加减’的顺序进行。
有理数的乘方
1.乘方的概念
求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。
在an中,a叫做底数,n叫做指数。
2.乘方的性质
(1)负数的奇次幂是负数,负数的偶次幂的正数。
(2)正数的任何次幂都是正数,0的任何正整数次幂都是0。
有理数的混合运算
做有理数的混合运算时,应注意以下运算顺序:
1.先乘方,再乘除,最后加减;
2.同级运算,从左到右进行;
3.如有括号,先做括号内的运算,按小括号,中括号,大括号依次进行。
科学记数法
把一个大于10的数表示成
a10n的形式(其中1
a10,n是正整数),这种记数法是
科学记数法。
用字母表示数
代数式
代数式:
用基本运算符号把数和字母连接而成的式子叫做代数式,如n,-1,2n+500,abc。
单独
的一个数或一个字母也是代数式。
单项式:
表示数与字母的乘积的代数式叫单项式。
单独的一个数或一个字母也是代数式。
单项式的系数:
单项式中的数字因数
单项式的次数:
一个单项式中,所有字母的指数和
多项式:
几个单项式的和叫做多项式。
每个单项式叫做多项式的项,不含字母的项叫做常数
项。
多项式里次数最高项的次数,叫做这个多项式的次数。
常数项的次数为0。
整式:
单项式和多项式统称为整式。
分母上含有字母的不是整式。
代数式书写规范:
①数与字母、字母与字母中的乘号可以省略不写或用“·
”表示,并把数字放到字母前;
②出现除式时,用分数表示;
③带分数与字母相乘时,带分数要化成假分数;
④若运算结果为加减的式子,当后面有单位时,要用括号把整个式子括起来。
合并同类项
同类项:
所含字母相同,并且相同字母的指数也相同的项叫做同类项。
合并同类项的法则:
同类项的系数相加,所得的结果作为系数,字母和字母的指数不变。
合并同类项的步骤:
(1)准确的找出同类项;
(2)运用加法交换律,把同类项交换位置后结
合在一起;
(3)利用法则,把同类项的系数相加,字母和字母的指数不变;
(4)写出合并后
的结果。
去括号的法则
(1)括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项的符号都不变;
(2)括号前面是“—”号,把括号和它前面的“—”号去掉,括号里各项的符号都要改变。
整式的加减:
进行整式的加减运算时,如果有括号先去括号,再合并同类项。
整式加减的步骤:
(1)列出代数式;
(2)去括号;
(3)合并同类项。
一元一次方程
一元一次方程的概念:
只含有一个未知数(元)且未知数的指数是1(次)的方程叫做一元
一次方程。
一般形式:
ax+b=0(a≠0)
未知数在分母中时,它的次数不能看成是1次。
如13x,它不是一元一次方程。
x
解一元一次方程
方程的解:
能使方程左右两边相等的未知数的值叫做方程的解。
解方程:
求方程的解的过程叫做解方程。
等式的性质:
(1)等式两边都加上或减去同一个数或同一个整式,所得结果仍是等式;
(2)等式两边都乘或除以同一个不等于0的数,所得结果仍是等式。
移项
移项:
方程中的某些项改变符号后,可以从方程的一边移到另一边,这样的变形叫做移项。
移项的依据:
(1)移项实际上就是对方程两边进行同时加减,根据是等式的性质1;
(2)系
数化为1实际上就是对方程两边同时乘除,根据是等式的性质2。
移项的作用:
移项时一般把含未知数的项向左移,常数项往右移,使左边对含未知数的项合
并,右边对常数项合并。
移项时要跨越“=”号,移过的项一定要变号。
解一元一次方程的一般步骤:
去分母、去括号、移项、合并同类项、未知数的系数化为1。
去分母时不可漏乘不含分母的项。
分数线有括号的作用,去掉分母后,若分子是多项
式,要加括号。
解下列方程:
(1)4x3
42x;
(2)4x3(20x)
6x7(9x);
(3)x1
5x
x1;
(4)0.1x0.2x13
0.020.5
用方程解决问题
列一元一次方程解应用题的基本步骤:
审清题意、设未知数(元)、列出方程、解方程、写
出答案。
关键在于抓住问题中的有关数量的相等关系,列出方程。
解决问题的策略:
利用表格和示意图帮助分析实际问题中的数量关系
实际问题的常见类型:
行程问题:
路程=时间×
速度,时间
路程
=
,速度=
速度
时间
(单位:
路程——米、千米;
时间——秒、分、时;
速度——米/秒、米/分、千米/小时)
工程问题:
工作总量=工作时间×
工作效率,工作总量=各部分工作量的和
利润问题:
利润=售价-进价,利润率=利润,售价=标价×
(1-折扣)
进价
等积变形问题:
长方体的体积=长×
宽×
高;
圆柱的体积=底面积×
锻造前的体积=锻造
后的体积
利息问题:
本息和=本金+利息;
利息=本金×
利率
走进图形世界
1、几何图形
从实物中抽象出来的各种图形,包括立体图形和平面图形。
立体图形:
有些几何图形的各个部分不都在同一平面内,它们是立体图形。
平面图形:
有些几何图形的各个部分都在同一平面内,它们是平面图形。
2、点、线、面、体
(1)几何图形的组成
点:
线和线相交的地方是点,它是几何图形中最基本的图形。
线:
面和面相交的地方是线,分为直线和曲线。
面:
包围着体的是面,分为平面和曲面。
体:
几何体也简称体。
(2)点动成线,线动成面,面动成体。
3、生活中的立体图形圆柱
柱体
棱柱:
三棱柱、四棱柱(方体、正方体)、五棱柱、⋯⋯
生活中的立体形球体
(按名称分)
椎体
棱
4、棱柱及其有关概念:
棱:
在棱柱中,任何相两个面的交,都叫做棱。
棱:
相两个面的交叫做棱。
n棱柱有两个底面,n个面,共(n+2)个面;
3n条棱,n条棱;
2n个点。
棱柱的所有棱都相等,棱柱的上下两个底面是相同的多形,直棱柱的面是方
形。
棱柱的面有可能是方形,也有可能是平行四形。
5、正方体的平面展开:
11种
6、截一个正方体:
用一个平面去截一个正方体,截出的面可能是三角形,四形,五
形,六形。
7、三
物体的三指主、俯、左。
主:
从正面看到的,叫做主。
左:
从左面看到的,叫做左。
俯:
从上面看到的,叫做俯。
平面图形的认识
段,射,直