空间几何体的表面积和体积讲解及经典例题.doc

上传人:b****3 文档编号:2116577 上传时间:2022-10-27 格式:DOC 页数:15 大小:1.92MB
下载 相关 举报
空间几何体的表面积和体积讲解及经典例题.doc_第1页
第1页 / 共15页
空间几何体的表面积和体积讲解及经典例题.doc_第2页
第2页 / 共15页
空间几何体的表面积和体积讲解及经典例题.doc_第3页
第3页 / 共15页
空间几何体的表面积和体积讲解及经典例题.doc_第4页
第4页 / 共15页
空间几何体的表面积和体积讲解及经典例题.doc_第5页
第5页 / 共15页
点击查看更多>>
下载资源
资源描述

空间几何体的表面积和体积讲解及经典例题.doc

《空间几何体的表面积和体积讲解及经典例题.doc》由会员分享,可在线阅读,更多相关《空间几何体的表面积和体积讲解及经典例题.doc(15页珍藏版)》请在冰豆网上搜索。

空间几何体的表面积和体积讲解及经典例题.doc

空间几何体的表面积和体积

一.课标要求:

了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式)。

二.命题走向

近些年来在高考中不仅有直接求多面体、旋转体的面积和体积问题,也有已知面积或体积求某些元素的量或元素间的位置关系问题。

即使考查空间线面的位置关系问题,也常以几何体为依托.因而要熟练掌握多面体与旋转体的概念、性质以及它们的求积公式.同时也要学会运用等价转化思想,会把组合体求积问题转化为基本几何体的求积问题,会等体积转化求解问题,会把立体问题转化为平面问题求解,会运用“割补法”等求解。

由于本讲公式多反映在考题上,预测2009年高考有以下特色:

(1)用选择、填空题考查本章的基本性质和求积公式;

(2)考题可能为:

与多面体和旋转体的面积、体积有关的计算问题;与多面体和旋转体中某些元素有关的计算问题;

三.要点精讲

1.多面体的面积和体积公式

名称

侧面积(S侧)

全面积(S全)

体积(V)

棱柱

直截面周长×l

S侧+2S底

S底·h=S直截面·h

直棱柱

ch

S底·h

棱锥

各侧面积之和

S侧+S底

S底·h

正棱锥

ch′

棱台

各侧面面积之和

S侧+S上底+S下底

h(S上底+S下底+)

正棱台

(c+c′)h′

表中S表示面积,c′、c分别表示上、下底面周长,h表斜高,h′表示斜高,l表示侧棱长。

2.旋转体的面积和体积公式

名称

圆柱

圆锥

圆台

S侧

2πrl

πrl

π(r1+r2)l

S全

2πr(l+r)

πr(l+r)

π(r1+r2)l+π(r21+r22)

4πR2

V

πr2h(即πr2l)

πr2h

πh(r21+r1r2+r22)

πR3

表中l、h分别表示母线、高,r表示圆柱、圆锥与球冠的底半径,r1、r2分别表示圆台上、下底面半径,R表示半径。

四.典例解析

题型1:

柱体的体积和表面积

例1.一个长方体全面积是20cm2,所有棱长的和是24cm,求长方体的对角线长.

解:

设长方体的长、宽、高、对角线长分别为xcm、ycm、zcm、lcm

依题意得:

(2)2得:

x2+y2+z2+2xy+2yz+2xz=36(3)

由(3)-

(1)得x2+y2+z2=16

即l2=16

所以l=4(cm)。

点评:

涉及棱柱面积问题的题目多以直棱柱为主,而直棱柱中又以正方体、长方体的表面积多被考察。

我们平常的学习中要多建立一些重要的几何要素(对角线、内切)与面积、体积之间的关系。

例2.如图1所示,在平行六面体ABCD—A1B1C1D1中,已知AB=5,AD=4,AA1=3,AB⊥AD,∠A1AB=∠A1AD=。

(1)求证:

顶点A1在底面ABCD上的射影O在∠BAD的平分线上;

(2)求这个平行六面体的体积。

图1图2

解析:

(1)如图2,连结A1O,则A1O⊥底面ABCD。

作OM⊥AB交AB于M,作ON⊥AD交AD于N,连结A1M,A1N。

由三垂线定得得A1M⊥AB,A1N⊥AD。

∵∠A1AM=∠A1AN,

∴Rt△A1NA≌Rt△A1MA,∴A1M=A1N,

从而OM=ON。

∴点O在∠BAD的平分线上。

(2)∵AM=AA1cos=3×=

∴AO==。

又在Rt△AOA1中,A1O2=AA12–AO2=9-=,

∴A1O=,平行六面体的体积为。

题型2:

柱体的表面积、体积综合问题

例3.一个长方体共一顶点的三个面的面积分别是,这个长方体对角线的长是()

A.2 B.3 C.6 D.

解析:

设长方体共一顶点的三边长分别为a=1,b=,c=,则对角线l的长为l=;答案D。

点评:

解题思路是将三个面的面积转化为解棱柱面积、体积的几何要素—棱长。

例4.如图,三棱柱ABC—A1B1C1中,若E、F分别为AB、AC的中点,平面EB1C1将三棱柱分成体积为V1、V2的两部分,那么V1∶V2=_____。

解:

设三棱柱的高为h,上下底的面积为S,体积为V,则V=V1+V2=Sh。

∵E、F分别为AB、AC的中点,

∴S△AEF=S,

V1=h(S+S+)=Sh

V2=Sh-V1=Sh,

∴V1∶V2=7∶5。

点评:

解题的关键是棱柱、棱台间的转化关系,建立起求解体积的几何元素之间的对应关系。

最后用统一的量建立比值得到结论即可。

题型3:

锥体的体积和表面积

P

A

B

C

D

O

E

例5.(2008山东卷6)

右图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是D

(A)9π       (B)10π

(C)11π(D)12π

(2008江西卷10)

连结球面上两点的线段称为球的弦。

半径为4的球的两条弦、的长度分别等于、,、分别为、的中点,每条弦的两端都在球面上运动,有下列四个命题:

①弦、可能相交于点②弦、可能相交于点

③的最大值为5④的最小值为1

其中真命题的个数为C

A.1个B.2个C.3个D.4个

(2008湖北卷3)

用与球心距离为的平面去截球,所得的截面面积为,则球的体积为B

A.B.C.D.

点评:

本小题重点考查线面垂直、面面垂直、二面角及其平面角、棱锥的体积。

在能力方面主要考查空间想象能力。

例6.(2008北京,19).

(本小题满分12分)

A

B

C

M

P

D

如图,在四棱锥中,平面平面,,是等边三角形,已知,.

(Ⅰ)设是上的一点,证明:

平面平面;

(Ⅱ)求四棱锥的体积.

(Ⅰ)证明:

在中,

由于,,,

A

B

C

M

P

D

O

所以.

故.

又平面平面,平面平面,

平面,

所以平面,

又平面,

故平面平面.

(Ⅱ)解:

过作交于,

由于平面平面,

所以平面.

因此为四棱锥的高,

又是边长为4的等边三角形.

因此.

在底面四边形中,,,

所以四边形是梯形,在中,斜边边上的高为,

此即为梯形的高,

所以四边形的面积为.

故.

点评:

本题比较全面地考查了空间点、线、面的位置关系。

要求对图形必须具备一定的洞察力,并进行一定的逻辑推理。

题型4:

锥体体积、表面积综合问题

例7.ABCD是边长为4的正方形,E、F分别是AB、AD的中点,GB垂直于正方形ABCD所在的平面,且GC=2,求点B到平面EFC的距离?

解:

如图,取EF的中点O,连接GB、GO、CD、FB构造三棱锥B-EFG。

设点B到平面EFG的距离为h,BD=,EF,CO=。

而GC⊥平面ABCD,且GC=2。

由,得·

点评:

该问题主要的求解思路是将点面的距离问题转化为体积问题来求解。

构造以点B为顶点,△EFG为底面的三棱锥是解此题的关键,利用同一个三棱锥的体积的唯一性列方程是解这类题的方法,从而简化了运算。

例8.(2007江西理,12)

如图,在四面体ABCD中,截面AEF经过四面体的内切球(与四个面都相切的球)球心O,且与BC,DC分别截于E、F,如果截面将四面体分成体积相等的两部分,设四棱锥A-BEFD与三棱锥A-EFC的表面积分别是S1,S2,则必有()

A.S1S2

C.S1=S2D.S1,S2的大小关系不能确定

解:

连OA、OB、OC、OD,

则VA-BEFD=VO-ABD+VO-ABE+VO-BEFD

VA-EFC=VO-ADC+VO-AEC+VO-EFC又VA-BEFD=VA-EFC,

而每个三棱锥的高都是原四面体的内切球的半径,故SABD+SABE+SBEFD=SADC+SAEC+SEFC又面AEF公共,故选C

点评:

该题通过复合平面图形的分割过程,增加了题目处理的难度,求解棱锥的体积、表面积首先要转化好平面图形与空间几何体之间元素间的对应关系。

题型5:

棱台的体积、面积及其综合问题

例9.(2008四川理,19)

(本小题满分12分)

如图,面ABEF⊥面ABCD,四边形ABEF与四边形ABCD都是直角梯形,∠BAD=∠FAB=90°,BC∥AD,BE∥AF,G、H分别是FA、FD的中点。

(Ⅰ)证明:

四边形BCHG是平行四边形;

(Ⅱ)C、D、E、F四点是否共面?

为什么?

(Ⅲ)设AB=BE,证明:

平面ADE⊥平面CDE.

G

H

F

E

D

C

B

A

)解法一:

(Ⅰ)由题设知,FG=GA,FH=HD.

所以GH,

又BC,故GHBC.

所以四边形BCHG是平行四边形.

(Ⅱ)C、D、F、E四点共面.理由如下:

由BE,G是FA的中点知,BEGF,所以EF∥BG.

由(Ⅰ)知BG∥GH,故FH共面.又点D在直线FH上.

所以C、D、F、E四点共面.

(Ⅲ)连结EG,由AB=BE,BEAG及∠BAG=90°知ABEG是正方形.

故BG⊥EA.由题设知,FA、AD、AB两两垂直,故AD⊥平面FABE,

因此EA是ED在平面FABE内的射影,根据三垂线定理,BG⊥ED.

又ED∩EA=E,所以BG⊥平面ADE.

由(Ⅰ)知,CH∥BG,所以CH⊥平面ADE.由(Ⅱ)知F平面CDE.故CH平面CDE,得平面ADE⊥平面CDE.

解法二:

由题设知,FA、AB、AD两两互相垂直.

如图,以A为坐标原点,射线AB为x轴正方向建立直角坐标系A-xyz.

(Ⅰ)设AB=a,BC=b,BE=c,则由题设得

A(0,0,0),B(a,0,0),C(a,b,0),D(0,2b,0),E(a,0,c),G(0,0,c),H(0,b,c).

所以,

于是

又点G不在直线BC上.

所以四边形BCHG是平行四边形.

(Ⅱ)C、D、F、E四点共面.理由如下:

由题设知,F(0,0,2c),所以

(Ⅲ)由AB=BE,得c=a,所以

即CH⊥AE,CH⊥AD,

又AD∩AE=A,所以CH⊥平面ADE,

故由CH平面CDFE,得平面ADE⊥平面CDE.

点评:

该题背景较新颖,把求二面角的大小与证明线、面平行这一常规运算置于非规则几何体(拟柱体)中,能考查考生的应变能力和适应能力,而第三步研究拟柱体的近似计算公式与可精确计算体积的辛普生公式之间计算误差的问题,是极具实际意义的问题。

考查了考生继续学习的潜能。

例10.

(1)(2008四川理,8)

设是球心的半径上的两点,且,分别过作垂线于的面截球得三个圆,则这三个圆的面积之比为:

(D)

(A)  (B)  (C)  (D)

【解】:

设分别过作垂线于的面截球得三个圆的半径为,球半径为,则:

∴∴这三个圆的面积之比为:

故选D

【点评】:

此题重点考察球中截面圆半径,球半径之间的关系;

【突破】:

画图数形结合,提高空间想象能力,利用勾股定理;

例11.(2008四川文,12)

若三棱柱的一个侧面是边长为2的正方形,另外两个侧面都是有一个内角为的菱形,则该棱柱的体积等于(B)

(A)  (B)  (C)  (D)

【解】:

如图在三棱柱中,设,

由条件有,作于点,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > IT计算机 > 电脑基础知识

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1