数学思想方法概括.doc

上传人:b****3 文档编号:2112972 上传时间:2022-10-27 格式:DOC 页数:14 大小:103KB
下载 相关 举报
数学思想方法概括.doc_第1页
第1页 / 共14页
数学思想方法概括.doc_第2页
第2页 / 共14页
数学思想方法概括.doc_第3页
第3页 / 共14页
数学思想方法概括.doc_第4页
第4页 / 共14页
数学思想方法概括.doc_第5页
第5页 / 共14页
点击查看更多>>
下载资源
资源描述

数学思想方法概括.doc

《数学思想方法概括.doc》由会员分享,可在线阅读,更多相关《数学思想方法概括.doc(14页珍藏版)》请在冰豆网上搜索。

数学思想方法概括.doc

函数方程

函数思想,是指用函数的概念和性质去分析问题、转化问题和解决问题。

方程思想,是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型(方程、不等式、或方程与不等式的混合组),然后通过解方程(组)或不等式(组)来使问题获解。

有时,还实现函数与方程的互相转化、接轨,达到解决问题的目的。

笛卡尔的方程思想是:

实际问题→数学问题→代数问题→方程问题。

宇宙世界,充斥着等式和不等式。

我们知道,哪里有等式,哪里就有方程;哪里有公式,哪里就有方程;求值问题是通过解方程来实现的……等等;不等式问题也与方程是近亲,密切相关。

列方程、解方程和研究方程的特性,都是应用方程思想时需要重点考虑的。

函数描述了自然界中数量之间的关系,函数思想通过提出问题的数学特征,建立函数关系型的数学模型,从而进行研究。

它体现了“联系和变化”的辩证唯物主义观点。

一般地,函数思想是构造函数从而利用函数的性质解题,经常利用的性质是:

f(x)、f(x)的单调性、奇偶性、周期性、最大值和最小值、图像变换等,要求我们熟练掌握的是一次函数、二次函数、幂函数、指数函数、对数函数、三角函数的具体特性。

在解题中,善于挖掘题目中的隐含条件,构造出函数解析式和妙用函数的性质,是应用函数思想的关键。

对所给的问题观察、分析、判断比较深入、充分、全面时,才能产生由此及彼的联系,构造出函数原型。

另外,方程问题、不等式问题和某些代数问题也可以转化为与其相关的函数问题,即用函数思想解答非函数问题。

函数知识涉及的知识点多、面广,在概念性、应用性、理解性都有一定的要求,所以是高考中考查的重点。

我们应用函数思想的几种常见题型是:

遇到变量,构造函数关系解题;有关的不等式、方程、最小值和最大值之类的问题,利用函数观点加以分析;含有多个变量的数学问题中,选定合适的主变量,从而揭示其中的函数关系;实际应用问题,翻译成数学语言,建立数学模型和函数关系式,应用函数性质或不等式等知识解答;等差、等比数列中,通项公式、前n项和的公式,都可以看成n的函数,数列问题也可以用函数方法解决。

数形结合

中学数学的基本知识分三类:

一类是纯粹数的知识,如实数、代数式、方程(组)、不等式(组)、函数等;一类是关于纯粹形的知识,如平面几何、立体几何等;一类是关于数形结合的知识,主要体现是解析几何。

数形结合是一个数学思想方法,包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:

或者是借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数为目的,比如应用函数的图像来直观地说明函数的性质;或者是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质。

恩格斯曾说过:

“数学是研究现实世界的量的关系与空间形式的科学。

”数形结合就是根据数学问题的条件和结论之间的内在联系,既分析其代数意义,又揭示其几何直观,使数量关的精确刻画与空间形式的直观形象巧妙、和谐地结合在一起,充分利用这种结合,寻找解题思路,使问题化难为易、化繁为简,从而得到解决。

“数”与“形”是一对矛盾,宇宙间万物无不是“数”和“形”的矛盾的统一。

华罗庚先生说过:

“数缺形时少直观,形少数时难入微,数形结合百般好,隔裂分家万事休。

数形结合的思想,其实质是将抽象的数学语言与直观的图像结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化。

在运用数形结合思想分析和解决问题时,要注意三点:

第一要彻底明白一些概念和运算的几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何意义又分析其代数意义;第二是恰当设参、合理用参,建立关系,由数思形,以形想数,做好数形转化;第三是正确确定参数的取值范围。

数学中的知识,有的本身就可以看作是数形的结合。

如:

锐角三角函数的定义是借助于直角三角形来定义的;任意角的三角函数是借助于直角坐标系或单位圆来定义的。

数学思想在人类文明中的作用

1、数学与自然科学:

在天文学领域里,在第谷·布拉埃观察的基础上,开普勒提出了天体运动三定律:

(a)行星在椭圆轨道上绕太阳运动,太阳在此椭圆的一个焦点上。

(b)从太阳到行星的向径在相等的时间内扫过的面积是F(如图)。

(c)行星绕太阳公转的周期的平方与椭圆轨道C的半长轴的立方成正比。

开普勒是世界上第一个用数学公式描述天体运动的人,他使天文学从古希腊的静态几何学转化为动力学。

这一定律出色地证明了毕达哥拉斯主义核心的数学原理。

的确是,现象的数学结构提供了理解现象的钥匙。

爱因斯坦的相对论是物理学中,乃至整个宇宙的一次伟大革命。

其核心内容是时空观的改变。

牛顿力学的时空观认为时间与空间不相干。

爱因斯坦的时空观却认为时间和空间是相互联系的。

促使爱因斯坦做出这一伟大贡献的仍是数学的思维方式。

爱因斯坦的空间概念是相对论诞生50年前德国数学家黎曼为他准备好的概念。

在生物学中,数学使生物学从经验科学上升为理论科学,由定性科学转变为定量科学。

它们的结合与相互促进已经产生并将继续产生许多奇妙的结果。

生物学的问题促成了数学的一大分支——生物数学的诞生与发展,到今天生物数学已经成为一门完整的学科。

它对生物学的新应用有以下三个方面:

生命科学、生理学、脑科学。

2、数学与社会科学

如果说在自然科学中,更多的是运用数学的计算公式及计算能力;那么在社会科学的领域中,就更能体现出数学思想的作用。

要借助数学的思想,首先,必须发明一些基本公理,然后通过严密的数学推导证明,从这些公理中得出人类行为的定理。

而公理又是如何产生的呢?

借助经验和思考。

而在社会学的领域中,公理自身应该有足够的证据说明他们合乎人性,这样人们才会接受。

说到社会科学,就不免提一下数学在政治领域中的作用。

休谟曾说:

“政治可以转化为一门科学”。

而在政治学公理中,洛克的社会契约论具有非常重要的意义,它不仅仅是文艺复兴时期的代表,也推动了整个社会的进步。

西方的资产阶级的文明比起封建社会的文明是进步了许多,但它必将被社会主义、共产主义文明所取代。

共产党人提出的“解放全人类”——为人民谋幸福、“为人民服务”和“三个代表”应当也必将成为政府的基本公理。

在政治中不能不提的便是民主,而民主最为直接的表现形式就是选举。

而数学在选票分配问题上发挥着重要作用。

选票分配首先就是要公平,而如何才能做到公平呢?

1952年数学家阿罗证明了一个令人吃惊的定理——阿罗不可能定理,即不可能找到一个公平合理的选举系统。

这就是说,只有相对合理,没有绝对合理。

原来世上本无“公平”!

阿罗不可能定理是数学应用于社会科学的一个里程碑。

在经济学中,数学的广泛而深入的应用是当前经济学最为深刻的变革之一。

现代经济学的发展对其自身的逻辑和严密性提出了更高的要求,这就使得经济学与数学的结合成为必然。

首先,严密的数学方法可以保证经济学中推理的可靠性,提高讨论问题的效率。

其次,具有客观性与严密性的数学方法可以抵制经济学研究中先入为主的偏见。

第三,经济学中的数据分析需要数学工具,数学方法可以解决经济生活中的定量分析。

在人口学、伦理学、哲学等其他社会科学中也渗透着数学思想

等价转化

等价转化是把未知解的问题转化到在已有知识范围内可解的问题的一种重要的思想方法。

通过不断的转化,把不熟悉、不规范、复杂的问题转化为熟悉、规范甚至模式法、简单的问题。

历年高考,等价转化思想无处不见,我们要不断培养和训练自觉的转化意识,将有利于强化解决数学问题中的应变能力,提高思维能力和技能、技巧。

转化有等价转化与非等价转化。

等价转化要求转化过程中前因后果是充分必要的,才保证转化后的结果仍为原问题的结果。

非等价转化其过程是充分或必要的,要对结论进行必要的修正(如无理方程化有理方程要求验根),它能给人带来思维的闪光点,找到解决问题的突破口。

我们在应用时一定要注意转化的等价性与非等价性的不同要求,实施等价转化时确保其等价性,保证逻辑上的正确。

著名的数学家,莫斯科大学教授C.A.雅洁卡娅曾在一次向数学奥林匹克参赛者发表《什么叫解题》的演讲时提出:

“解题就是把要解题转化为已经解过的题”。

数学的解题过程,就是从未知向已知、从复杂到简单的化归转换过程。

等价转化思想方法的特点是具有灵活性和多样性。

在应用等价转化的思想方法去解决数学问题时,没有一个统一的模式去进行。

它可以在数与数、形与形、数与形之间进行转换;它可以在宏观上进行等价转化,如在分析和解决实际问题的过程中,普通语言向数学语言的翻译;它可以在符号系统内部实施转换,即所说的恒等变形。

消去法、换元法、数形结合法、求值求范围问题等等,都体现了等价转化思想,我们更是经常在函数、方程、不等式之间进行等价转化。

可以说,等价转化是将恒等变形在代数式方面的形变上升到保持命题的真假不变。

由于其多样性和灵活性,我们要合理地设计好转化的途径和方法,避免死搬硬套题型。

在数学操作中实施等价转化时,我们要遵循熟悉化、简单化、直观化、标准化的原则,即把我们遇到的问题,通过转化变成我们比较熟悉的问题来处理;或者将较为繁琐、复杂的问题,变成比较简单的问题,比如从超越式到代数式、从无理式到有理式、从分式到整式…等;或者比较难以解决、比较抽象的问题,转化为比较直观的问题,以便准确把握问题的求解过程,比如数形结合法;或者从非标准型向标准型进行转化。

按照这些原则进行数学操作,转化过程省时省力,有如顺水推舟,经常渗透等价转化思想,可以提高解题的水平和能力。

分类讨论

在解答某些数学问题时,有时会遇到多种情况,需要对各种情况加以分类,并逐类求解,然后综合得解,这就是分类讨论法。

分类讨论是一种逻辑方法,是一种重要的数学思想,同时也是一种重要的解题策略,它体现了化整为零、积零为整的思想与归类整理的方法。

有关分类讨论思想的数学问题具有明显的逻辑性、综合性、探索性,能训练人的思维条理性和概括性,所以在高考试题中占有重要的位置。

引起分类讨论的原因主要是以下几个方面:

①问题所涉及到的数学概念是分类进行定义的。

如|a|的定义分a>0、a=0、a<0三种情况。

这种分类讨论题型可以称为概念型。

②问题中涉及到的数学定理、公式和运算性质、法则有范围或者条件限制,或者是分类给出的。

如等比数列的前n项和的公式,分q=1和q≠1两种情况。

这种分类讨论题型可以称为性质型。

③解含有参数的题目时,必须根据参数的不同取值范围进行讨论。

如解不等式ax>2时分a>0、a=0和a<0三种情况讨论。

这称为含参型。

另外,某些不确定的数量、不确定的图形的形状或位置、不确定的结论等,都主要通过分类讨论,保证其完整性,使之具有确定性。

进行分类讨论时,我们要遵循的原则是:

分类的对象是确定的,标准是统一的,不遗漏、不重复,科学地划分,分清主次,不越级讨论。

其中最重要的一条是“不漏不重”。

解答分类讨论问题时,我们的基本方法和步骤是:

首先要确定讨论对象以及所讨论对象的全体的范围;其次确定分类标准,正确进行合理分类,即标准统一、不漏不重、分类互斥(没有重复);再对所分类逐步进行讨论,分级进行,获取阶段性结果;最后进行归纳小结,综合得出结论。

思维方法

数学认识的一般性与特殊性

数学作为对客观事物的一种认识,与其他科学认识一样,其认识的发生和发展过程遵循实践——认识——再实践的认识路线。

但是,数学对象(量)的特殊性和抽象性,又产生与其他科学不同的、特有的认识方法和理论形式。

由此产生数学认识论的特有问题。

数学认识的一般性

认识论是研究认识的本质以及认识发生、发展一般规律的学说,它涉及认识的来源、感性认识与理性认识的关系、认识的真理性等问题。

数学作为对客观事物的一种认识,其认识论也同样需要探讨这些问题;其认识过程,与其他科学认识一样,也必然遵循实践——认识——再实践这一辩证唯物论的认识路线。

事实上,数学史上的许多新学科都是在解决现实问题的实践中产生的。

最古老的算术和几何学产生于日常生活、生产中的计数和测量,这已是不争的历史事实。

数学家应用已有的数学知识在解决生产和科学技术提出

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 工程科技 > 能源化工

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1