常见的初中数学公式文档格式.docx
《常见的初中数学公式文档格式.docx》由会员分享,可在线阅读,更多相关《常见的初中数学公式文档格式.docx(22页珍藏版)》请在冰豆网上搜索。
44定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2
47勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形
48定理四边形的内角和等于360°
49四边形的外角和等于360°
50多边形内角和定理n边形的内角的和等于(n-2)×
180°
51推论任意多边的外角和等于360°
52平行四边形性质定理1平行四边形的对角相等
53平行四边形性质定理2平行四边形的对边相等
54推论夹在两条平行线间的平行线段相等
55平行四边形性质定理3平行四边形的对角线互相平分
56平行四边形判定定理1两组对角分别相等的四边形是平行四边形
57平行四边形判定定理2两组对边分别相等的四边形是平行四边形
58平行四边形判定定理3对角线互相平分的四边形是平行四边形
59平行四边形判定定理4一组对边平行相等的四边形是平行四边形
60矩形性质定理1矩形的四个角都是直角
61矩形性质定理2矩形的对角线相等
62矩形判定定理1有三个角是直角的四边形是矩形
63矩形判定定理2对角线相等的平行四边形是矩形
64菱形性质定理1菱形的四条边都相等
65菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角
66菱形面积=对角线乘积的一半,即S=(a×
b)÷
2
67菱形判定定理1四边都相等的四边形是菱形
68菱形判定定理2对角线互相垂直的平行四边形是菱形
69正方形性质定理1正方形的四个角都是直角,四条边都相等
70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角
71定理1关于中心对称的两个图形是全等的
72定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分
73逆定理如果两个图形的对应点连线都经过某一点,并且被这一
点平分,那么这两个图形关于这一点对称
74等腰梯形性质定理等腰梯形在同一底上的两个角相等
75等腰梯形的两条对角线相等
76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形
77对角线相等的梯形是等腰梯形
78平行线等分线段定理如果一组平行线在一条直线上截得的线段
相等,那么在其他直线上截得的线段也相等
79推论1经过梯形一腰的中点与底平行的直线,必平分另一腰
80推论2经过三角形一边的中点与另一边平行的直线,必平分第
三边
81三角形中位线定理三角形的中位线平行于第三边,并且等于它
的一半
82梯形中位线定理梯形的中位线平行于两底,并且等于两底和的
一半L=(a+b)÷
2S=L×
h
83
(1)比例的基本性质如果a:
b=c:
d,那么ad=bc
如果ad=bc,那么a:
d
84
(2)合比性质如果a/b=c/d,那么(a±
b)/b=(c±
d)/d
85(3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么
(a+c+…+m)/(b+d+…+n)=a/b
86平行线分线段成比例定理三条平行线截两条直线,所得的对应
线段成比例
87推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例
88定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边
89平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例
90定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似
91相似三角形判定定理1两角对应相等,两三角形相似(ASA)
92直角三角形被斜边上的高分成的两个直角三角形和原三角形相似
93判定定理2两边对应成比例且夹角相等,两三角形相似(SAS)
94判定定理3三边对应成比例,两三角形相似(SSS)
95定理如果一个直角三角形的斜边和一条直角边与另一个直角三
角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似
96性质定理1相似三角形对应高的比,对应中线的比与对应角平
分线的比都等于相似比
97性质定理2相似三角形周长的比等于相似比
98性质定理3相似三角形面积的比等于相似比的平方
99任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等
于它的余角的正弦值
100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等
于它的余角的正切值
101圆是定点的距离等于定长的点的集合
102圆的内部可以看作是圆心的距离小于半径的点的集合
103圆的外部可以看作是圆心的距离大于半径的点的集合
104同圆或等圆的半径相等
105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半
径的圆
106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直
平分线
107到已知角的两边距离相等的点的轨迹,是这个角的平分线
108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距
离相等的一条直线
109定理不在同一直线上的三点确定一个圆。
110垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧
111推论1①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
112推论2圆的两条平行弦所夹的弧相等
113圆是以圆心为对称中心的中心对称图形
114定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦
相等,所对的弦的弦心距相等
115推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两
弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等
116定理一条弧所对的圆周角等于它所对的圆心角的一半
117推论1同弧或等弧所对的圆周角相等;
同圆或等圆中,相等的圆周角所对的弧也相等
118推论2半圆(或直径)所对的圆周角是直角;
90°
的圆周角所
对的弦是直径
119推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形
120定理圆的内接四边形的对角互补,并且任何一个外角都等于它
的内对角
121①直线L和⊙O相交d<r
②直线L和⊙O相切d=r
③直线L和⊙O相离d>r
122切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线
123切线的性质定理圆的切线垂直于经过切点的半径
124推论1经过圆心且垂直于切线的直线必经过切点
125推论2经过切点且垂直于切线的直线必经过圆心
126切线长定理从圆外一点引圆的两条切线,它们的切线长相等,
圆心和这一点的连线平分两条切线的夹角
127圆的外切四边形的两组对边的和相等
128弦切角定理弦切角等于它所夹的弧对的圆周角
129推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等
130相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积
相等
131推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的
两条线段的比例中项
132切割线定理从圆外一点引圆的切线和割线,切线长是这点到割
线与圆交点的两条线段长的比例中项
133推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等
134如果两个圆相切,那么切点一定在连心线上
135①两圆外离d>R+r②两圆外切d=R+r
③两圆相交R-r<d<R+r(R>r)
④两圆内切d=R-r(R>r)⑤两圆内含d<R-r(R>r)
136定理相交两圆的连心线垂直平分两圆的公共弦
137定理把圆分成n(n≥3):
⑴依次连结各分点所得的多边形是这个圆的内接正n边形
⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形
138定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
139正n边形的每个内角都等于(n-2)×
/n
140定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形
141正n边形的面积Sn=pnrn/2p表示正n边形的周长
142正三角形面积√3a/4a表示边长
143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为
360°
,因此k×
(n-2)180°
/n=360°
化为(n-2)(k-2)=4
144弧长计算公式:
L=n兀R/180
145扇形面积公式:
S扇形=n兀R^2/360=LR/2
146内公切线长=d-(R-r)外公切线长=d-(R+r)
实用工具:
常用数学公式
公式分类公式表达式
乘法与因式分a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)
三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b<
=>
-b≤a≤b
|a-b|≥|a|-|b|-|a|≤a≤|a|
一元二次方程的解-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a
根与系数的关系X1+X2=-b/aX1*X2=c/a注:
韦达定理
判别式
b2-4ac=0注:
方程有两个相等的实根
b2-4ac>
0注:
方程有两个不等的实根
b2-4ac<
方程没有实根,有共轭复数根
三角函数公式
两角和公式
sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式
tan2A=2tanA/(1-tan2A)ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半角公式
sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))
和差化积
2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB-ctgA+ctgBsin(A+B)/sinAsinB
某些数列前n项和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理a/sinA=b/sinB=c/sinC=2R注:
其中R表示三角形的外接圆半径
余弦定理b2=a2+c2-2accosB注:
角B是边a和边c的夹角
圆的标准方程(x-a)2+(y-b)2=r2注:
(a,b)是圆心坐标
圆的一般方程x2+y2+Dx+Ey+F=0注:
D2+E2-4F>
0
抛物线标准方程y2=2pxy2=-2pxx2=2pyx2=-2py
直棱柱侧面积S=c*h斜棱柱侧面积S=c'
*h
正棱锥侧面积S=1/2c*h'
正棱台侧面积S=1/2(c+c'
)h'
圆台侧面积S=1/2(c+c'
)l=pi(R+r)l球的表面积S=4pi*r2
圆柱侧面积S=c*h=2pi*h圆锥侧面积S=1/2*c*l=pi*r*l
弧长公式l=a*ra是圆心角的弧度数r>
0扇形面积公式s=1/2*l*r
锥体体积公式V=1/3*S*H圆锥体体积公式V=1/3*pi*r2h
斜棱柱体积V=S'
L注:
其中,S'
是直截面面积,L是侧棱长
柱体体积公式V=s*h圆柱体V=pi*r2h
梯形s面积a上底b下底h高面积=(上底+下底)×
高÷
2s=(a+b)×
h÷
28?
?
圆形s面积c周长∏d=直径r=半径
(1)周长=直径×
∏=2×
∏?
半径c=∏d=2∏r
(2)面积=半径×
半径×
∏9?
圆柱体v体积?
h高?
s;
底面积?
r底面半径c底面周长
(1)侧面积=底面周长×
高
(2)表面积=侧面积+底面积×
2(3)体积=底面积×
高(4)体积=侧面积÷
2×
半径
圆锥体v体积h高s;
底面积r底面半径体积=底面积×
3总数÷
总份数=平均数和差问题的公式(和+差)÷
2=大数(和-差)÷
2=小数和倍问题和÷
(倍数-1)=小数小数×
倍数=大数(或者和-小数=大数)差倍问题差÷
倍数=大数(或小数+差=大数)植树问题非封闭线路上的植树问题主要可分为以下三种情形⑴如果在非封闭线路的两端都要植树,那么株数=段数+1=全长÷
株距-1全长=株距×
(株数-1)株距=全长÷
(株数-1)⑵如果在非封闭线路的一端要植树,另一端不要植树,那么株数=段数=全长÷
株距全长=株距×
株数株距=全长÷
株数⑶如果在非封闭线路的两端都不要植树,那么株数=段数-1=全长÷
(株数+1)株距=全长÷
(株数+1)封闭线路上的植树问题的数量关系如下株数=段数=全长÷
株数盈亏问题(盈+亏)÷
两次分配量之差=参加分配的份数(大盈-小盈)÷
两次分配量之差=参加分配的份数(大亏-小亏)÷
两次分配量之差=参加分配的份数相遇问题相遇路程=速度和×
相遇时间相遇时间=相遇路程÷
速度和速度和=相遇路程÷
相遇时间追及问题追及距离=速度差×
追及时间追及时间=追及距离÷
速度差速度差=追及距离÷
追及时间流水问题顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷
2水流速度=(顺流速度-逆流速度)÷
2浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷
溶液的重量×
100%=浓度溶液的重量×
浓度=溶质的重量溶质的重量÷
浓度=溶液的重量利润与折扣问题利润=售出价-成本利润率=利润÷
成本×
100%=(售出价÷
成本-1)×
100%涨跌金额=本金×
涨跌百分比折扣=实际售价÷
原售价×
100%(折扣<1)利息=本金×
利率×
时间税后利息=本金×
时间×
(1-20%)
初中的物理公式
物理量单位公式
名称符号名称符号
质量m千克kgm=pv
温度t摄氏度°
C
速度v米/秒m/sv=s/t
密度p千克/米?
kg/m?
p=m/v
力(重力)F牛顿(牛)NG=mg
压强P帕斯卡(帕)PaP=F/S
功W焦耳(焦)JW=Fs
功率P瓦特(瓦)wP=W/t
电流I安培(安)AI=U/R
电压U伏特(伏)VU=IR
电阻R欧姆(欧)R=U/I
电功W焦耳(焦)JW=UIt
电功率P瓦特(瓦)wP=W/t=UI
热量Q焦耳(焦)JQ=cm(t-t°
)
比热c焦/(千克°
C)J/(kg°
C)
真空中光速3×
108米/秒
g9.8牛顿/千克
15°
C空气中声速340米/秒
安全电压不高于36伏
初中物理基本概念概要
一、测量
⒈长度L:
主单位:
米;
测量工具:
刻度尺;
测量时要估读到最小刻度的下一位;
光年的单位是长度单位。
⒉时间t:
秒;
钟表;
实验室中用停表。
1时=3600秒,1秒=1000毫秒。
⒊质量m:
物体中所含物质的多少叫质量。
主单位:
千克;
测量工具:
秤;
实验室用托盘天平。
二、机械运动
⒈机械运动:
物体位置发生变化的运动。
参照物:
判断一个物体运动必须选取另一个物体作标准,这个被选作标准的物体叫参照物。
⒉匀速直线运动:
①比较运动快慢的两种方法:
a比较在相等时间里通过的路程。
b比较通过相等路程所需的时间。
②公式:
1米/秒=3.6千米/时。
三、力
⒈力F:
力是物体对物体的作用。
物体间力的作用总是相互的。
力的单位:
牛顿(N)。
测量力的仪器:
测力器;
实验室使用弹簧秤。
力的作用效果:
使物体发生形变或使物体的运动状态发生改变。
物体运动状态改变是指物体的速度大小或运动方向改变。
⒉力的三要素:
力的大小、方向、作用点叫做力的三要素。
力的图示,要作标度;
力的示意图,不作标度。
⒊重力G:
由于地球吸引而使物体受到的力。
方向:
竖直向下。
重力和质量关系:
G=mgm=G/g
g=9.8牛/千克。
读法:
9.8牛每千克,表示质量为1千克物体所受重力为9.8牛。
重心:
重力的作用点叫做物体的重心。
规则物体的重心在物体的几何中心。
⒋二力平衡条件:
作用在同一物体;
两力大小相等,方向相反;
作用在一直线上。
物体在二力平衡下,可以静止,也可以作匀速直线运动。
物体的平衡状态是指物体处于静止或匀速直线运动状态。
处于平衡状态的物体所受外力的合力为零。
⒌同一直线二力合成:
方向相同:
合力F=F1+F2;
合力方向与F1、F2方向相同;
方向相反:
合力F=F1-F2,合力方向与大的力方向相同。
⒍相同条件下,滚动摩擦力比滑动摩擦力小得多。
滑动摩擦力与正压力,接触面材料性质和粗糙程度有关。
【滑动摩擦、滚动摩擦、静摩擦】
7.牛顿第一定律也称为惯性定律其内容是:
一切物体在不受外力作用时,总保持静止或匀速直线运动状态。
惯性:
物体具有保持原来的静止或匀速直线运动状态的性质叫做惯性。
四、密度
⒈密度ρ:
某种物质单位体积的质量,密度是物质的一种特性。
公式:
m=ρV国际单位:
千克/米3,常用单位:
克/厘米3,
关系:
1克/厘米3=1×
103千克/米3;
ρ水=1×
103千克每立方米,表示1立方米水的质量为103千克。
⒉密度测定:
用托盘天平测质量,量筒测固体或液体的体积。
面积单位换算:
1厘米2=1×
10-4米2,
1毫米2=1×
10-6米2。
五、压强
⒈压强P:
物体单位面积上受到的压力叫做压强。
压力F:
垂直作用在物体表面上的力,单位:
牛(N)。
压力产生的效果用压强大小表示,跟压力大小、受力面积大小有关。
压强单位:
牛/米2;
专门名称:
帕斯卡(Pa)
F=PS【S:
受力面积,两物体接触的公共部分;
单位:
米2。
】
改变压强大小方法:
①减小压力或增大受力面积,可