指数函数的图象及其性质Word格式.docx

上传人:b****5 文档编号:20765730 上传时间:2023-01-25 格式:DOCX 页数:13 大小:26.63KB
下载 相关 举报
指数函数的图象及其性质Word格式.docx_第1页
第1页 / 共13页
指数函数的图象及其性质Word格式.docx_第2页
第2页 / 共13页
指数函数的图象及其性质Word格式.docx_第3页
第3页 / 共13页
指数函数的图象及其性质Word格式.docx_第4页
第4页 / 共13页
指数函数的图象及其性质Word格式.docx_第5页
第5页 / 共13页
点击查看更多>>
下载资源
资源描述

指数函数的图象及其性质Word格式.docx

《指数函数的图象及其性质Word格式.docx》由会员分享,可在线阅读,更多相关《指数函数的图象及其性质Word格式.docx(13页珍藏版)》请在冰豆网上搜索。

指数函数的图象及其性质Word格式.docx

教学难点:

对底数的分类,如何由图象、解析式归纳指数函数的性质。

六、教学过程:

(一)创设情景、提出问题(约3分钟)

师:

如果让1号同学准备2粒米,2号同学准备4粒米,3号同学准备6粒米,4号同学准备8粒米,5号同学准备10粒米,……按这样的规律,51号同学该准备多少米?

学生回答后教师公布事先估算的数据:

51号同学该准备102粒米,大约5克重。

如果改成让1号同学准备2粒米,2号同学准备4粒米,3号同学准备8粒米,4号同学准备16粒米,5号同学准备32粒米,……按这样的规律,51号同学该准备多少米?

【学情预设:

学生可能说很多或能算出具体数目】

大家能否估计一下,51号同学该准备的米有多重?

教师公布事先估算的数据:

51号同学所需准备的大米约重1.2亿吨。

1.2亿吨是一个什么概念?

根据2007年9月13日美国农业部发布的最新数据显示,2007~2008年度我国大米产量预计为1.27亿吨。

这就是说51号同学所需准备的大米相当于2007~2008年度我国全年的大米产量!

【设计意图:

用一个看似简单的实例,为引出指数函数的概念做准备;

同时通过与一次函数的对比让学生感受指数函数的爆炸增长,激发学生学习新知的兴趣和欲望。

在以上两个问题中,每位同学所需准备的米粒数用表示,每位同学的座号数用表示,与之间的关系分别是什么?

学生很容易得出y=2x()和()

学生可能会漏掉的取值范围,教师要引导学生思考具体问题中的范围。

(二)师生互动、探究新知

1.指数函数的定义

其实,在本章开头的问题2中,也有一个与类似的关系式()

⑴让学生思考讨论以下问题(问题逐个给出):

(约3分钟)

①()和()这两个解析式有什么共同特征?

②它们能否构成函数?

③是我们学过的哪个函数?

如果不是,你能否根据该函数的特征给它起个恰当的名字?

引导学生从具体问题、实际问题中抽象出数学模型。

学生对比已经学过一次函数、反比例函数、二次函数,发现,是一个新的函数模型,再让学生给这个新的函数命名,由此激发学生的学习兴趣。

引导学生观察,两个函数中,底数是常数,指数是自变量。

如果可以用字母代替其中的底数,那么上述两式就可以表示成的形式。

自变量在指数位置,所以我们把它称作指数函数。

⑵让学生讨论并给出指数函数的定义。

(约6分钟)

对于底数的分类,可将问题分解为:

①若会有什么问题?

(如,则在实数范围内相应的函数值不存在)

②若会有什么问题?

(对于,都无意义)

③若又会怎么样?

(无论取何值,它总是1,对它没有研究的必要.)

为了避免上述各种情况的发生,所以规定且.

在这里要注意生生之间、师生之间的对话。

①若学生从教科书中已经看到指数函数的定义,教师可以问,为什么要求;

为什么不行?

②若学生只给出,教师可以引导学生通过类比一次函数()、反比例函数()、二次函数()中的限制条件,思考指数函数中底数的限制条件。

【设计意图:

①对指数函数中底数限制条件的讨论可以引导学生研究一个函数应注意它的实际意义和研究价值;

②讨论出,也为下面研究性质时对底数的分类做准备。

接下来教师可以问学生是否明确了指数函数的定义,能否写出一两个指数函数?

教师也在黑板上写出一些解析式让学生判断,如,,。

学生可能只是关注指数是否是变量,而不考虑其它的。

加深学生对指数函数定义和呈现形式的理解。

2.指数函数性质

⑴提出两个问题(约3分钟)

①目前研究函数一般可以包括哪些方面;

让学生在研究指数函数时有明确的目标:

函数三个要素(对应法则、定义域、值域、)和函数的基本性质(单调性、奇偶性)。

②研究函数(比如今天的指数函数)可以怎么研究?

用什么方法、从什么角度研究?

可以从图象和解析式这两个不同的角度进行研究;

可以从具体的函数入手(即底数取一些数值);

当然也可以用列表法研究函数,只是今天我们所学的函数用列表法不易得出此函数的性质,可见具体问题要选择适当的方法来研究才能事半功倍!

还可以借助一些数学思想方法来思考。

①让学生知道图象法不是研究函数的唯一方法,由此引导学生可以从图象和解析式(包括列表)不同的角度对函数进行研究;

②对学生进行数学思想方法(从一般到特殊再到一般、数形结合、分类讨论)的有机渗透。

⑵分组活动,合作学习(约8分钟)

好,下面我们就从图象和解析式这两个不同的角度对指数函数进行研究。

①让学生分为两大组,一组从解析式的角度入手(不画图)研究指数函数,一组借助电脑通过几何画板的操作从图象的角度入手研究指数函数;

②每一大组再分为若干合作小组(建议4人一小组);

③每组都将研究所得到的结论或成果写出来以便交流。

考虑到各组的水平可能有所不同,教师应巡视,对个别组可做适当的指导。

通过自主探索、合作学习不仅让学生充当学习的主人更可加深对所得到结论的理解。

⑶交流、总结(约10~12分钟)

下面我们开一个成果展示会!

教师在巡视过程中应关注各组的研究情况,此时可选一些有代表性的小组上台展示研究成果,并对比从两个角度入手研究的结果。

教师可根据上课的实际情况对学生发现、得出的结论进行适当的点评或要求学生分析。

这里除了研究定义域、值域、单调性、奇偶性外,再引导学生注意是否还有其它性质?

各组在研究过程中除了定义域、值域、单调性、奇偶性外是否还得到一些有价值的副产品呢?

(如过定点(0,1),与的图象关于y轴对称)

①首先选一从解析式的角度研究的小组上台汇报;

②对于从图象的角度研究的,可先选没对底数进行分类的小组上台汇报;

③问其它小组有没不同的看法,上台补充,让学生对底数进行分类,引导学生思考哪个量决定着指数函数的单调性,以什么为分界,教师可以马上通过电脑操作看函数图象的变化。

①函数的表示法有三种:

列表法、图象法、解析法,通过这个活动,让学生知道研究一个具体的函数可以也应该从多个角度入手,从图象角度研究只是能直观的看出函数的一些性质,而具体的性质还是要通过对解析式的论证;

特别是定义域、值域更是可以直接从解析式中得到的。

②让学生上台汇报研究成果,让学生有种成就感,同时还可训练其对数学问题的分析和表达能力,培养其数学素养;

③对指数函数的底数进行分类是本课的一个难点,让学生在讨论中自己解决分类问题使该难点的突破显得自然。

从图象入手我们很容易看出函数的单调性、奇偶性、以及过定点(0,1),但定义域、值域却不可确定;

从解析式(结合列表)可以很容易得出函数的定义域、值域,但对底数的分类却很难想到。

教师通过几何画板中改变参数的值,追踪的图象,在变化过程中,让全体学生进一步观察指数函数的变化规律。

师生共同总结指数函数的图象和性质,教师可以边总结边板书。

定义域

R

值域

过定点(0,1)

非奇非偶

在R上是减函数

在R上是增函数

(三)巩固训练、提升总结(约8分钟)

1.例:

已知指数函数的图象经过点,求的值。

解:

因为的图象经过点,所以

即,解得,于是。

所以。

通过本题加深学生对指数函数的理解。

根据本题,你能说出确定一个指数函数需要什么条件吗?

从方程思想来看,求指数函数就是确定底数,因此只要一个条件,即布列一个方程就可以了。

让学生明确底数是确定指数函数的要素,同时向学生渗透方程的思想。

2.练习:

⑴在同一平面直角坐标系中画出和的大致图象,并说出这两个函数的性质;

⑵求下列函数的定义域:

①,②。

3.师:

通过本节课的学习,你对指数函数有什么认识?

你有什么收获?

学生可能只是把指数函数的性质总结一下,教师要引导学生谈谈对函数研究的学习,即怎么研究一个函数。

①让学生再一次复习对函数的研究方法(可以从也应该从多个角度进行),让学生体会本课的研究方法,以便能将其迁移到其他函数的研究中去。

②总结本节课中所用到的数学思想方法。

③强调各种研究数学的方法之间有区别又有联系,相互作用,才能融会贯通。

4.作业:

课本59页习题2.1A组第5题。

七、教学反思

1.本节课改变了以往常见的函数研究方法,让学生从不同的角度去研究函数,对函数进行一个全方位的研究,不仅仅是通过对比总结得到指数函数的性质,更重要的是让学生体会到对函数的研究方法,以便能将其迁移到其他函数的研究中去,教师可以真正做到“授之以渔”而非“授之以鱼”。

2.教学中借助信息技术可以弥补传统教学在直观感、立体感和动态感方面的不足,可以很容易的化解教学难点、突破教学重点、提高课堂效率,本课使用几何画板可以动态地演示出指数函数的底数的动态过程,让学生直观观察底数对指数函数单调性的影响。

3.在教学过程中不断向学生渗透数学思想方法,让学生在活动中感受数学思想方法之美、体会数学思想方法之重要,部分学生还能自觉得运用这些数学思想方法去分析、思考问题。

福州十一中胡鹏程

点评:

本节是指数函数及其性质概念课,胡老师在教学设计中,让人印象深刻的是以学生为主体,注重学法指导,重视新旧知识的契合,关注知识的类比,学习方法的迁移。

胡老师能够抓住学生的好奇心,将娱乐“计算米粒”与数学有机地结合在一起,提高了学生学习本节知识的兴趣。

在观察“准备米粒”得到和章开头()函数关系式后,巧妙而不失时机地引导学生从具体问题中抽象出数学模型,发现指数在变化,这与以前所学函数(一次函数、二次函数、反比例函数)都不一样,把变化的量用表示,不变的量用a表示;

通过让学生给函数命名,举几个指数函数例子这个小环节,增强学生对指数函数本质的理解,激发学习兴趣,概念的得到可谓“润物细无声”。

接着,胡老师在设计中还注重对学生探索能力的培养,让学生类比一次函数()、反比例函数()、二次函数()中的限制条件,给出指数函数的定义及底数的取值范围。

在研究指数函数的性质时,胡老师能够紧扣第一章的函数知识,让学生在研究指数函数时有明确的目标:

通过提问的方法,让学生明白研究函数可以从图象和解析式这两个不同的角度进行出发,将学生的注意力引向本节的第二个知识点——图象及其性质。

设计中将学生进行分组,通过学生的自主探究、合作学习,侧重对解析式、作图象探索。

学生的上台报告,老师借助几何画板的直观图形,以形助数,以数定形,数形结合的数学方法,收到了较好的研究效果。

用二分法求方程的近似解

一、教学内容分析

本节课选自《普通高中课程标准实验教科书数学1必修本(A版)》的第三章3.1.2用二分法求方程的近似解.本节课要求学生根据具体的函数图象能够借助计算机或信息技术工具计算器用二分法求相应方程的近似解,了解这种方法是求方程近似解的常用方法,从中体会函数与方程之间的联系;

它既是本册书中的重点内容,又是对函数知识的拓展,既体现了函数在解方程中的重要应用,同时又为高中数学中函数与方程思想、数形结合思想、二分法的算法思想打下了基础,因此决定了它的重要地位.

二、学生学习情况分析

学生已经学习了函数,理解函数零点和方程根的关系,初步掌握函数与方程的转化思想.但是对于求函数零点所在区间,只是比较熟悉求二次函数的零点,对于高次方程和超越方程对应函数零点的寻求会有困难.另外算法程序的模式化和求近似解对他们是一个全新的问题.

倡导积极主动、勇于探索的学习精神和合作探究式的学习方式;

注重提高学生的数学思维能力,发展学生的数学应用意识;

与时俱进地认识“双基”,强调数学的内在本质,注意适度形式化;

在教与学的和谐统一中体现数学的文化价值;

注重信息技术与数学课程的合理整合.

四、教学目标

通过具体实例理解二分法的概念,掌握运用二分法求简单方程近似解的方法,从中体会函数的零点与方程根之间的联系及其在实际问题中的应用;

能借助计算器用二分法求方程的近似解,让学生能够初步了解逼近思想;

体会数学逼近过程,感受精确与近似的相对统一;

通过具体实例的探究,归纳概括所发现的结论或规律,体会从具体到一般的认知过程.

五、教学重点和难点

1.教学重点:

用“二分法”求方程的近似解,使学生体会函数零点与方程根之间的联系,初步形成用函数观点处理问题的意识.

2.教学难点:

方程近似解所在初始区间的确定,恰当地使用信息技术工具,利用二分法求给定精确度的方程的近似解.

六、教学过程设计

(一)创设情境,提出问题

问题1:

在一个风雨交加的夜里,从某水库闸房到防洪指挥部的电话线路发生了故障.这是一条10km长的线路,如何迅速查出故障所在?

如果沿着线路一小段一小段查找,困难很多.每查一个点要爬一次电线杆子.10km长,大约有200多根电线杆子呢.

想一想,维修线路的工人师傅怎样工作最合理?

以实际问题为背景,以学生感觉较简单的问题入手,激活学生的思维,形成学生再创造的欲望.注意学生解题过程中出现的问题,及时引导学生思考,从二分查找的角度解决问题.

[学情预设]学生独立思考,可能出现的以下解决方法:

思路1:

直接一个个电线杆去寻找.

思路2:

通过先找中点,缩小范围,再找剩下来一半的中点.

老师从思路2入手,引导学生解决问题:

如图,维修工人首先从中点C.查用随身带的话机向两个端点测试时,发现AC段正常,断定故障在BC段,再到BC段中点D,这次发现BD段正常,可见故障在CD段,再到CD中点E来查.每查一次,可以把待查的线路长度缩减一半,如此查下去,不用几次,就能把故障点锁定在一两根电线杆附近.

我们可以用一个动态过程来展示一下(展示多媒体课件).

在一条线段上找某个特定点,可以通过取中点的方法逐步缩小特定点所在的范围(即二分法思想).

[设计意图]从实际问题入手,利用计算机演示用二分法思想查找故障发生点,通过演示让学生初步体会二分法的算法思想与方法,说明二分法原理源于现实生活,并在现实生活中广泛应用.

(二)师生探究,构建新知

问题2:

假设电话线故障点大概在函数的零点位置,请同学们先猜想它的零点大概是什么?

我们如何找出这个零点?

?

1.利用函数性质或借助计算机、计算器画出函数图象,通过具体的函数图象帮助学生理解闭区间上的连续函数,如果两个端点的函数值是异号的,那么函数图象就一定与轴相交,即方程在区间内至少有一个解(即上节课的函数零点存在性定理,为下面的学习提供理论基础).引导学生从“数”和“形”两个角度去体会函数零点的意义,掌握常见函数零点的求法,明确二分法的适用范围.

2.我们已经知道,函数在区间(2,3)内有零点,且<0,>0.进一步的问题是,如何找出这个零点?

合作探究:

学生先按四人小组探究.(倡导学生积极交流、勇于探索的学习方式,有助于发挥学生学习的主动性)

生:

如果能够将零点所在的范围尽量缩小,那么在一定精确度的要求下,我们可以得到零点的近似值.

如何有效缩小根所在的区间?

生1:

通过“取中点”的方法逐步缩小零点所在的范围.

生2:

是否也可以通过“取三等分点或四等分点”的方法逐步缩小零点所在的范围?

很好,一个直观的想法是:

如果能够将零点所在的范围尽量缩小,那么在一定精确度的要求下,可以得到零点的近似值.其实“取中点”和“取三等分点或四等分点”都能实现缩小零点所在的范围.但是在同样可以实现缩小零点所在范围的前提下,“取中点”的方法比取“三等分点或四等分点”的方法更简便.因此,为了方便,下面通过“取中点”的方法逐步缩小零点所在的范围.

引导学生分析理解求区间的中点的方法.

(学生2人一组互相配合,一人按计算器,一人记录过程.四人小组中的两组比较缩小零点所在范围的结果.)

步骤一:

取区间(2,3)的中点2.5,用计算器算得.

由>0,得知,所以零点在区间(2.5,3)内。

步骤二:

取区间(2.5,3)的中点2.75,用计算器算得.因为,所以零点在区间(2.5,2.75)内.?

结论:

由于(2,3)?

,所以零点所在的范围确实越来越小了.如果重复上述步骤,在一定精确度下,我们可以在有限次重复上述步骤后,将所得的零点所在区间内的任一点作为函数零点的近似值.特别地,可以将区间端点作为函数零点的近似值.

引导学生利用计算器边操作边认识,通过小组合作探究,得出教科书上的表3—2,让学生有更多的时间来思考与体会二分法实质,培养学生合作学习的良好品质.

[学情预设]学生通过上节课的学习知道这个函数的零点就是函数图象与x轴的交点的横坐标,故它的零点在区间(2,3)内.进一步利用函数图象通过“取中点”逐步缩小零点的范围,利用计算器通过将自变量改变步长减少很快得出表3—2,找出零点的大概位置.

[设计意图]从问题1到问题2,体现了数学转化的思想方法,问题2有着承上启下的作用,使学生更深刻地理解二分法的思想,同时也突出了二分法的特点.通过问题2让学生掌握常见函数零点的求法,明确二分法的适用范围.

3.问题3:

对于其他函数,如果存在零点是不是也可以用这种方法去求它的近似解呢?

引导学生把上述方法推广到一般的函数,经历归纳方法的一般性过程之后得出二分法及用二分法求函数的零点近似值的步骤.

对于在区间,上连续不断且满足·

的函数,通过不断地把函数的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.

注意引导学生分化二分法的定义(一是二分法的适用范围,即函数在区间,上连续不断,二是用二分法求函数的零点近似值的步骤).

给定精确度,用二分法求函数的零点近似值的步骤如下:

1、确定区间,,验证·

,给定精确度;

2、求区间,的中点;

3、计算:

(1)若=,则就是函数的零点;

(2)若·

<

,则令=(此时零点);

(3)若·

4、判断是否达到精确度:

即若,则得到零点零点值(或);

否则重复步骤2—4.

利用二分法求方程近似解的过程,可以简约地用下图表示.

[学情预设]学生思考问题3举出二次函数外,对照步骤观察函数的图象去体会二分法的思想.结合二次函数图象和标有、、的数轴理解二分法的算法思想与计算原理.

[设计意图]以问题研讨的形式替代教师的讲解,分化难点、解决重点,给学生“数学创造”的体验,有利与学生对知识的掌握,并强化对二分法原理的理解.学生在讨论、合作中解决问题,充分体会成功的愉悦.让学生归纳一般步骤有利于提高学生自主学习的能力,让学生尝试由特殊到一般的思维方法.利用二分法求方程近似解的过程,用图表示,既简约又直观,同时能让学生初步体会算法的思想.

(三)例题剖析,巩固新知

例:

借助计算器或计算机用二分法求方程的近似解(精确度0.1).

两人一组,一人用计算器求值,一人记录结果;

学生讲解缩小区间的方法和过程,教师点评.

本例鼓励学生自行尝试,让学生体验解题遇阻时的困惑以及解决问题的快乐.此例让学生体会用二分法来求方程近似解的完整过程,进一步巩固二分法的思想方法.

思考:

问题

(1):

用二分法只能求函数零点的“近似值”吗?

问题

(2):

是否所有的零点都可以用二分法来求其近似值?

教师有针对性的提出问题,引导学生回答,学生讨论,交流.反思二分法的特点,进一步明确二分法的适用范围以及优缺点,指出它只是求函数零点近似值的“一种”方法.

[设计意图]及时巩固二分法的解题步骤,让学生体会二分法是求方程近似解的有效方法.解题过程中也起到了温故转化思想的作用.

(四)尝试练习,检验成果

1、下列函数中能用二分法求零点的是().

[设计意图]让学生明确二分法的适用范围.

2、用二分法求图象是连续不断的函数在∈(1,2)内零点近似值的过程中得到,,,则函数的零点落在区间().

(A)(1,1.25)?

 (B)(1.25,1.5)(C)(1.5,2) (D)不能确定

[设计意图]让学生进一步明确缩小零点所在范围的方法.

3.借助计算器或计算机,用二分法求方程在区间(2,3)内的近似解(精确度0.1).

[设计意图]进一步加深和巩固对用二分法求方程近似解的理解.

(五)课堂小结,回顾反思

学生归纳,互相补充,老师总结:

1、理解二分法的定义和思想,用二分法可以求函数的零点近似值,但要保证该函数在零点所在的区间内是连续不断;

2、用二分法求方程的近似解的步骤.

[设计意图]帮助学生梳理知识,形成完整的知识结构.同时让学生知道理解二分法定义是关键,掌握二分法解题的步骤是前提,实际应用是深化.

(六)课外作业

1.[书面作业]第92页习题3.1A组3、4、5;

2.[知识链接]第91页阅读与思考“中外历史上的方程求解”.

3.[课外思考]:

如果现在地处学校附近的地下自来水管某处破裂了,那么怎么找出这个破裂处,要不要把水泥板全部掀起?

板书设计

§

3.1.2用二分法求方程的近似解

1.二分法的定义

2.用二分法求函数的零点近似值的步骤

3.用二分法求

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 求职职场 > 自我管理与提升

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1