水暖锅炉温度压力控制系统Word文件下载.docx

上传人:b****6 文档编号:20694792 上传时间:2023-01-25 格式:DOCX 页数:12 大小:126.06KB
下载 相关 举报
水暖锅炉温度压力控制系统Word文件下载.docx_第1页
第1页 / 共12页
水暖锅炉温度压力控制系统Word文件下载.docx_第2页
第2页 / 共12页
水暖锅炉温度压力控制系统Word文件下载.docx_第3页
第3页 / 共12页
水暖锅炉温度压力控制系统Word文件下载.docx_第4页
第4页 / 共12页
水暖锅炉温度压力控制系统Word文件下载.docx_第5页
第5页 / 共12页
点击查看更多>>
下载资源
资源描述

水暖锅炉温度压力控制系统Word文件下载.docx

《水暖锅炉温度压力控制系统Word文件下载.docx》由会员分享,可在线阅读,更多相关《水暖锅炉温度压力控制系统Word文件下载.docx(12页珍藏版)》请在冰豆网上搜索。

水暖锅炉温度压力控制系统Word文件下载.docx

(3)通用外围设备包括打印机﹑记录仪﹑图形显示器﹑闪存等,它们用来显示﹑存储﹑打印﹑记录各种数据。

(4)I/O接口和I/O通道是计算机主机与外部连接的桥梁。

I/O通道有模拟量通道和数字量通道。

模拟量I/O通道将有传感变送器得到的工业对象的生产过程参数(标准电信号)变换成二进制代码传送给计算机;

同时将计算机输出的数字控制量变换为控制操作执行机构的模拟信号,实现对生产过程的控制。

2.过程计算机系统的软件部分:

(1)系统软件由计算机及过程控制系统的制造厂商提供,用来管理计算机本身资源,方便用户使用计算机。

(2)应用程序由用户根据要解决的控制问题而编写的各种程序(如各种数据采集﹑滤波程序﹑控制量计算程序﹑生产过程监控程序),应用软件的优劣将影响到控制系统的功能﹑精度和效率。

1.2串级控制系统

串级控制是在单回路PID控制的基础上发展起来的一种控制技术。

当PID控制应用于单回路控制一个被控量时,其控制结构简单,控制参数易于整定。

但是,当系统中同时有几个因素影响同一个被控量时,如果只控制其中一个因素,将难以满足系统的控制性能。

串级控制针对上述情况,在原控制回路中,增加一个或几个控制内回路,用以控制可能引起被控量变化的其它因素,从而有效地抑制了被控对象的时滞特性,提高了系统动态响应的快速性。

设定值R

图1-1串级控制系统框图

  本系统的串级控制系统如图1-1所示,采用两套检测变送器和两个调节器,前一个调节器的输出作为后一个调节器的设定,后一个调节器的输出送往调节阀。

前一个调节器称为主调节器,它所检测和控制的变量称主变量(主被控参数),即工艺控制指标;

后一个调节器称为副调节器,它所检测和控制的变量称副变量(副被控参数),是为了稳定主变量而引入的辅助变量。

  整个系统包括两个控制回路,主回路和副回路。

副回路由副变量检测变送、副调节器、调节阀和副过程构成;

主回路由主变量检测变送、主调节器、副调节器、调节阀、副过程和主过程构成。

当扰动发生时,破坏了稳定状态,调节器进行工作。

根据扰动施加点的位置不同,分情况进行分析:

1)扰动作用于副回路2)扰动作用于主过程3)扰动同时作用于副回路和主过程。

在串级控制系统中,由于引入了一个副回路,不仅能及早克服进入副回路的扰动,而且又能改善过程特性。

副调节器具有“粗调”的作用,主调节器具有“细调”的作用,从而使其控制品质得到进一步提高。

分析可以看到,串级控制系统改善了过程的动态特性、提高了系统控制质量、能迅速克服进入副回路的二次扰动、提高了系统的工作频率、对负荷变化的适应性较强等。

其主要工程应用场合有容量滞后较大的过程、纯时延较大的过程、扰动变化激烈而且幅度大的过程、参数互相关联的过程、非线性过程等。

1.3MATLAB软件

MATLAB软件是由美国MathWorks公司开发的,是目前国际上最流行、应用最广泛的科学与工程计算软件,它广泛应用于自动控制、数学运算、信号分析、计算机技术、图形图象处理、语音处理、汽车工业、生物医学工程和航天工业等各行各业,也是国内外高校和研究部门进行许多科学研究的重要工具。

MATLAB最早发行于1984年,经过10余年的不断改进,现今已推出基于Windows2000/xp的MATLAB7.0版本。

新的版本集中了日常数学处理中的各种功能,包括高效的数值计算、矩阵运算、信号处理和图形生成等功能。

在MATLAB环境下,用户可以集成地进行程序设计、数值计算、图形绘制、输入输出、文件管理等各项操作。

MATLAB提供了一个人机交互的数学系统环境,该系统的基本数据结构是复数矩阵,在生成矩阵对象时,不要求作明确的维数说明,使得工程应用变得更加快捷和便利。

MATLAB系统由五个主要部分组成:

(1)MATALB语言体系MATLAB是高层次的矩阵/数组语言.具有条件控制、函数调用、数据结构、输入输出、面向对象等程序语言特性。

利用它既可以进行小规模编程,完成算法设计和算法实验的基本任务,也可以进行大规模编程,开发复杂的应用程序。

(2)MATLAB工作环境这是对MATLAB提供给用户使用的管理功能的总称.包括管理工作空间中的变量据输入输出的方式和方法,以及开发、调试、管理M文件的各种工具。

(3)图形图像系统这是MATLAB图形系统的基础,包括完成2D和3D数据图示、图像处理、动画生成、图形显示等功能的高层MATLAB命令,也包括用户对图形图像等对象进行特性控制的低层MATLAB命令,以及开发GUI应用程序的各种工具。

(4)MATLAB数学函数库这是对MATLAB使用的各种数学算法的总称.包括各种初等函数的算法,也包括矩阵运算、矩阵分析等高层次数学算法。

(5)MATLAB应用程序接口(API)这是MATLAB为用户提供的一个函数库,使得用户能够在MATLAB环境中使用c程序或FORTRAN程序,包括从MATLAB中调用于程序(动态链接),读写MAT文件的功能。

 

第2章控制方案的设计

2.1设计控制系统框图

控制系统框图是控制系统实现的前提条件,它根据控制工艺的具体流程,反映系统信息的流动控制过程,本设计采用串级控制,考虑流量变化快,时间惯性小,应较快得到抑制,选择流量作为副被控参数,副环是随动控制,追求快速性,因而采用P调节,P调节器输出信号控制阀的开度改变流量,流量传感器将检测信号送回P调节器并形成负反馈,此闭环作为内环。

温度变化相对缓慢,时间惯性大,作为主被控参数,主环是定值控制,追求准确性,采用PID调节。

通过流程图可知:

将给定值与温度传感器反馈信号的差值输入主调节器,进行PID运算,实现控制算。

主调节器输出信号作为内环的给定值,与流量传感器反馈信号的差值送P调节器运算并输出,以控制调节阀,通过流量变化,影响锅炉温度。

得到控制系统框图如图2-1所示:

图2-1锅炉水温与流量控制系统框图

2.2被控对象建模

本系统以锅炉水温为主要控制对象,以进水流量为辅助控制对象。

目的是在一定加热功率下,控制水温的恒定。

其流程图如图2.2所示:

图2-2控制系统流程图

由温度传感器(主检测变送器)将温度信号转变为电信号与温度给定值相比较后送至主控制器,主控制器输出流量控制值与流量变送器(副检测变送器)反馈回来的进水流量信号相比较后输入流量调节器(副控制器),由流量调节器控

制调节阀的开度来控制进水流量,由此来对锅炉水温进行定值控制。

其系统框图如图2-3所示:

温度给定值

图2-3锅炉水温与流量串级控制系统框图

在控制系统设计工作中,需要针对被控过程中的合适对象建立数学模型。

被控对象的数学模型是设计过程控制系统、确定控制方案、分析质量指标、整定调节器参数等的重要依据。

被控对象的数学模型(动态特性)是指过程在各输入量(包括控制量和扰动量)作用下,其相应输出量(被控量)变化函数关系的数学表达式。

在水温-流量串级控制系统中,我们所关心的是如何在一定的电热功率下控制好水温的恒定。

进水流量是系统的被控对象,必须通过测定和计算他们模型,来分析系统的稳态性能、动态特性,为其他的设计工作提供依据。

第3章PID控制器原理

3.1PID控制器简介

PID控制器可以方便地实施多种控制算法,多年以来,在过程控制中,按偏差的比例(P)、积分(I)和微分(D)进行控制的PID控制器(亦称PID调节器),是应用最为广泛的一种自动控制器。

它具有原理简单,易于实现,适用面广,控制参数相互独立,参数的选定比较简单等优点;

选择系统调节规律的目的,是使调节器与调节对象能很好地匹配,使组成的控制系统能满足工艺上所提出的动、静态性能指标的要求。

1、比例(P)调节

纯比例调节器是一种最简单的调节器,它对控制作用和扰动作用的响应都很快速。

由于比例调节只有一个参数,所以整定很方便。

这种调节器的主要缺点是使系统存在静态误差。

2、积分(I)调节

积分调节器的突出特点是,只要被调量存在偏差,其输出的调节作用便随时间不断加强,直到偏差为零。

在被调量的偏差消除以后,由于积分规律的特点,输出将停留在新的位置而不回复原位,因而能保持静差为零。

但是,单纯的积分调节动作过于缓慢,因而在改善静态准确度的同时,往往使调节的动态品质变坏,过渡过程时间内延长,甚至造成系统不稳定。

因此在实际生产中,总是把比例作用的及时性和积分作用消除静差的优点结合起来,组成比例积分调节器(简称PI调节器),其传递函数为

Gc(S)=Kp(1+1/T1S)

3、微分(D)调节

微分调节器能在偏差信号出现或变化的瞬间,立即根据变化的趋势,产生强烈的调节作用,使偏差尽可能地消除在萌芽状态之中。

但是单纯的微分调节对静态偏差毫无抑制作用,因此不能单独使用,总要和比例或比例积分调节规律结合起来,称为PD调节器和PID调节器。

PD调节器由于有微分的作用,能增加系统的稳定度,比例系数的增加能加快系统的调节过程,减小动态和静态误差,但微分不能过大,以利于抗高频干扰。

PD调节器的传递函数为:

Gc(S)=Kp(1+TDS)

PID是常规调节器中性能最好的一处调节器。

它将比例、积分、微分三种调节规律结合在一起,既可达到快速敏捷,又可达到平稳准确,只要三项作用的强度配合适当,便可得到满意的调节效果。

它的传递函数为

Gc(S)=Kp(1+1/T1S+TDS)

3.2PID控制系统

PID控制器是一种线性控制器,它根据给定值r(t)与实际输出值c(t)构成控制偏差e(t),即

e(t)=r(t)-c(t)

将偏差的比例(P)、积分(I)、微分(D)通过线性组合构成控制量,对过程对象进行控制,故称为PID控制器。

控制规律为:

或以传递函数形式表示:

其中

-比例系数,

-积分时间常数

-微分时间常数

PID控制系统结构图如图3-1所示:

图3-1PID控制系统结构图

3.3PID控制参数的整定及方法

3.3.1PID控制参数的整定简介

过程控制器采用的控制器通常都有一个或多个需要调整的参数和调整这些参数的相应机构(如旋钮、开关)或相应设备。

通过调整这些参数使控制器特性与被控过程特性配合好,获得满意的系统静态与动态特性称为控制器参数整定。

由于人们在参数调整中,总是力图达到最佳的控制效果,所以常称“最佳整定”,相应的控制器参数称为“最佳参数整定”。

衡量控制器参数是否最佳,需要规定一个明确的反应控制系统质量的性能指标,一般分为稳态指标和动态指标。

需要指出的是,不同生产过程对于控制过程的品质要求不完全一样,因而对系统整定性能指标的选择有较大的灵活性。

作为系统整定的性能指标,它应能综合反映系统控制质量,同时又便于分析与计算。

3.3.2PID控制参数整定方法

控制器参数的整定方法很多,归纳起来可分为两大类,理论计算整定法与工程整定法。

顾名思义,理论计算整定法是在已知过程的数学模型基础上,依据控制理论,通过理论计算来求取“最佳整定参数”;

而工程整定法是根据工程经验,直接在过程控制系统中进行的控制器参数整定方法。

由于无论是用解析法或实验法求取的过程数学模型都只能近似反映过程的动态特性,因而理论计算所得到的整定参数值可靠性不够高,在现场使用中还需进行反复调整。

相反工程整定法虽未必得到“最佳整定参数”,但由于其不需知道过程的完整数学模型,使用者不需要具备理论计算所必须的控制理论知识,因而简便、实用,易于被工程技术人员所接受并优先使用。

下面将介绍本次设计中在现场调试调节器参数时所采用的一种整定方法,现场经验整定法。

这种方法是人们在长期的工程实践中,从各种控制规律对系统控制质量的影响的定性分析中总结出来的一种行之有效,并且得到广泛运用的工程整定方法。

(1)经验法

若将控制系统液位、流量、温度和压力等参数来分类,则属于同一类别的系统,其对象往往比较接近,无论是控制器形式还是所整定的参数均可相互参考。

表2.1为经验法整定参数的参考数据,在此基础上,对调节器的参数作进一步修正。

若需加微分作用,微分时间常数按TD=(1/3~1/4)TD计算。

(2)临界比例度法

这种整定方法是在闭环情况下进行的。

设T1=∞,TD=0,使调节器工作在纯比例情况下,将比例度由大逐渐变小,使系统的输出响应呈现等幅振荡,如图2.2所示。

根据临界比例度δs和振荡周期Ts,按表二所列的经验版式,求取调节器的参考参数数值,这种整定方法是以得到4:

1衰减为目标。

(3)阻尼振荡法(衰减曲线法)

在闭环系统中,先把调节器设置为纯比例作用,然后把比例度由大逐渐减小,加阶路扰动观察输出响应的衰减过程,直至出现图2.3所示的4:

1衰减过程为止。

这时的比例度称为4:

1衰减比例度,用δs表示之。

相邻两波峰间的距离称4:

1衰减周期Ts。

和Ts,运用表三所示的经验公式,就可计算出调节器预整定的参数值。

第4章控制方案的仿真设计

4.1MATLAB仿真

MATLAB还具有根强的功能扩展能力,与它的主系统一起,可以配备各种各样的工具箱,以完成一些特定的任务。

MATLAB具有丰富的可用于控制系统分析和设计的函数,MATLAB的控制系统工具箱(ControlSystemToolbox)提供对线性系统分析、设计和建模的各种算法;

MATLAB的系统辨识工具箱(SystemIdentificationToolbox)可以对控制对象的未知对象进行辨识和建模。

MATLAB的仿真工具箱(Simulink)提供了交互式操作的动态系统建模、仿真、分析集成环境。

它用结构框图代替程序智能化地建立和运行仿真,适应线性、非线性系统;

连续、离散及混合系统;

单任务,多任务离散事件系统。

4.2Simulink控制系统仿真

Simulink可以动态地模拟出在给多种信号作用下所构造控制系统的响应,只需将控制系统框图内对象改写为传递函数形式。

模拟PID控制器的传递函数D(s)=U(s)/E(s)=Kp(1+1/TiS+TdS)可理解为同一信号分别经比例、积分、微分运算后相加;

P调节器为纯比例环节;

锅炉传递函数已求得;

首先假设调节阀为纯比例环节,考虑到实际使用中,由于阀有动作死区,即位于0开度时可能有流量或小开度时无流量,达到最大开度时,控制信号尽管继续增大但已经失去调节作用等原因,将阀的传递函数作为非线性环节处理。

4.3串级控制与单回路控制系统抗干扰性能仿真

为了体现串级控制的优势,必须将串级控制系统的抗干扰能力和单回路控制系统的抗干扰能力加以比较。

串级控制的特点在于抗二次干扰能力强,在串级控制系统副回路中加入阶越信号来模拟流量的干扰,同时为了能够将数据与单回路控制系统抗干扰效果在同一张图内进行相比较,需要设置工作区域B,存储方式为数列。

单回路控制系统是采用PID控制器直接控制流量。

在同样位置加入流量的阶跃干扰信号,将仿真结果输出到工作区域C中,存储方式为数列。

只有当单回路控制系统的阶越响应曲线与串级控制系统的阶越响应曲线比较近似,并施加同样的干扰信号,其抗干扰能力才具有可比性。

在无干扰信号时,调节单回路控制系统参数,使响应曲线接近同样阶跃信号作用下串级控制系统响应曲线。

综合各种指标可认为两系统在阶跃信号下控制效果大致相同。

在两控制系统控制效果相同的情况下,加入干扰信号,单回路控制系统在干扰信号的作用下,最大偏差达到0.4,为稳态值的2%,在曲线末端甚至出现小幅度波动。

而串级控制系统在干扰信号的作用下,最大偏差仅在0.1左右,可认为系统仍处于的特点稳定状态,两者抗干扰能力十分悬殊。

充分证明了串级控制抑制二次干扰能力强。

4.4仿真结果分析

通过参数的调节可以得到较好的响应曲线。

图4-1控制系统仿真响应曲线

图4-1中的响应曲线是在阶跃信号初值0,终值20,阶跃时刻为0;

主调节器参数为

副调节器参数为

仿真时间2000s时得到的。

(1)余差C:

是系统过渡过程终了时给定值与被控参数稳态值之差。

由于仿真环境为理想状态,未考虑实际运行时可能出现的各种情况,余差必然为零。

(2)衰减率Ψ:

是衡量系统过渡过程稳定性的一个动态指标。

可定义为

,系统只有一个波峰,不存在震荡,因而可认为衰减比为0,Ψ=1。

(3)衰减比为0

(4)超调量σ:

对于定值系统来说,最大偏差是指被控参数第一个波的峰值与给定值的差,随动系统通常采用超调量指标,即

,由图知最大偏差约为0.6,超调量为3%。

(5)过渡过程时间

是指系统从受扰动作用时起,到被控参数进入新的稳定值±

5%的范围内所经历的时间,是衡量控制快速性的指标。

由图知,

≈220s时对应值20.6,即进入稳定值±

5%的范围内,可认为过渡完成。

综合动静态指标,可认为阶跃响应曲线相当理想,但由于是仿真结果,未考虑模型精确度,测量精度,以及真实系统中所存在的未知干扰等问题,只可作为设计参考,调节器参数、实际响应曲线未必与仿真一致,实际控制中可能达不到这么好的控制效果。

通过仿真参数的调节也得到了PID控制器参数对控制效果的影响。

比例控制Kp对系统性能的影响:

比例系数KP加大使系统的动作灵敏,响应速度加快,稳态误差减小,KP偏大,振荡次数加多,调节时间加长。

KP太大时,系统会趋于不稳定。

KP太小,又会使系统的动作缓慢。

KP可以选负数,这主要是由执行机构、传感器以控制对象的特性决定的。

积分控制KI对系统性能的影响:

积分作用使系统的稳定性下降,KI小(积分作用强)会使系统不稳定,但能消除稳态误差,提高系统的控制精度。

微分控制KD对系统性能的影响:

微分作用可以改善动态特性,KD偏大时,超调量较大,调节时间较短。

KD偏小时,超调量也较大,调节时间较长。

只有KD合适,才能使超调量偏小,减短调节时间。

结论

本次课程设计是对水暖锅炉温度压力控制系统的设计,在这次设计中我了解到了串级控制的作用,还有PID控制的作用,也知道了MATLAB软件使得工程应用变得更加快捷和方便。

同时了解综合应用过程控制理论以及近年来兴起的仿真技术、计算机远程控制、组态软件,设计了锅炉温度流量串级控制系统。

在此过程当中,我学到了很多有用的东西。

经过这次的课程设计,它给我们带来了很多收获。

它使我意识到自己的操作能力的不足,在理论上还存在很多缺陷。

所以在以后的学习生活中,我会更加努力地加强理论联系实践的学习,在努力学好专业知识的同时努力加强自己的专业技能方面的能力,使自己的知识在实践中不断增长,在实践中锻炼自己,培养自己各方面的能力。

致谢

首先,我要衷心感谢我的指导老师柏逢明老师,没有他的悉心指导,我也不会这么顺利的完成我的课程设计。

其次,我要感谢我的同学,在同学们的帮助下,使我顺利的完成了此次设计。

此次课程设计一开始指导老师的帮助和我自己阅资料下,我了解到了串级控制的作用,还有PID控制的作用,也知道了MATLAB软件使得工程应用变得更加快捷和方便。

在此过程当中,我学到了很多有用的东西,让我把整个本科知识又回顾了一遍,为以后进入社会打下了良好的基础,同时在查阅资料的过程当中也学到许多,新的或者以前未掌握的知识,让我从中受益匪浅。

参考文献

[1]邵裕森,戴先中《过程控制工程》北京机械工业出版社2000

[2]胡寿松主编.自动控制原理(第五版).科学出版社.2007

[3]张晓华主编.控制系统数字仿真与CAD.机械工业出版社.1999

[4]于海生主编.计算机控制技术.机械工业出版社.2007

[5]刘文定,王东林主编.过程控制系统的MATLAB仿真.机械工业出版社.2009

[6]薛定宇主编.控制系统计算机辅助设计——MATLAB语言与应用.清华大学出版社.2006

[7]TheMathWorks.Icn《MATLABHELP》2004

[8]ICPDAS《UserManual》2000

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 人文社科 > 视频讲堂

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1