流体力学典型例题.docx

上传人:b****2 文档编号:20121643 上传时间:2023-04-25 格式:DOCX 页数:41 大小:551.95KB
下载 相关 举报
流体力学典型例题.docx_第1页
第1页 / 共41页
流体力学典型例题.docx_第2页
第2页 / 共41页
流体力学典型例题.docx_第3页
第3页 / 共41页
流体力学典型例题.docx_第4页
第4页 / 共41页
流体力学典型例题.docx_第5页
第5页 / 共41页
点击查看更多>>
下载资源
资源描述

流体力学典型例题.docx

《流体力学典型例题.docx》由会员分享,可在线阅读,更多相关《流体力学典型例题.docx(41页珍藏版)》请在冰豆网上搜索。

流体力学典型例题.docx

流体力学典型例题

典型例题

1基本概念及方程

【1-1】底面积A=0.2m×0.2m的水容器,水面上有一块无重密封盖板,板上面放置一个重量为G1=3000N的铁块,测得水深h=0.5m,如图所示。

如果将铁块加重为G2=8000N,试求盖板下降的高度Δh。

【解】:

利用体积弹性系数计算体积压缩率:

p为绝对压强。

当地大气压未知,用标准大气压

代替。

不是很大,可选用其中任何一个,例如,选用

来计算体积弹性系数:

在工程实际中,当压强不太高时,可取

【2-2】用如图所示的气压式液面计测量封闭油箱中液面高程h。

打开阀门1,调整压缩空气的压强,使气泡开始在油箱中逸出,记下U形水银压差计的读数Δh1=150mm,然后关闭阀门1,打开阀门2,同样操作,测得Δh2=210mm。

已知a=1m,求深度h及油的密度ρ。

【解】水银密度记为ρ1。

打开阀门1时,设压缩空气压强为p1,考虑水银压差计两边液面的压差,以及油箱液面和排气口的压差,有

同样,打开阀门2时,

两式相减并化简得

代入已知数据,得

所以有

2基本概念及参数 

【1-3】测压管用玻璃管制成。

水的表面张力系数σ=0.0728N/m,接触角θ=8º,如果要求毛细水柱高度不超过5mm,玻璃管的内径应为多少?

【解】由于

因此

【1-4】高速水流的压强很低,水容易汽化成气泡,对水工建筑物产生气蚀。

拟将小气泡合并在一起,减少气泡的危害。

现将10个半径R1=0.1mm的气泡合成一个较大的气泡。

已知气泡周围的水压强po=6000Pa,水的表面张力系数σ=0.072N/m。

试求合成后的气泡半径R。

【解】小泡和大泡满足的拉普拉斯方程分别是

设大、小气泡的密度、体积分别为ρ、V和ρ1、V1。

大气泡的质量等于小气泡的质量和,即

合成过程是一个等温过程,T=T1。

球的体积为V=4/3πR3,因此

令x=R/R1,将已知数据代入上式,化简得

上式为高次方程,可用迭代法求解,例如,

以xo=2作为初值,三次迭代后得x=2.2372846,误差小于10-5,因此,合成的气泡的半径为

还可以算得大、小气泡的压强分布为

【1-5】一重W=500N的飞轮,其回转半径ρ=30cm,由于轴套间流体粘性的影响,当飞轮以速度ω=600转/分旋转时,它的减速度ε=0.02m/s2。

已知轴套长L=5cm,轴的直径d=2cm,其间隙t=0.05mm,求流体粘度。

【解】:

由物理学中的转动定律知,造成飞轮减速的力矩M=Jε,飞轮的转动惯量J

所以力矩

另一方面,从摩擦阻力F的等效力系看,造成飞轮减速的力矩为:

为线性分布。

摩擦阻力矩应等于M,即T=M

所以

3流体静力学

【2-1】试求解图中同高程的两条输水管道的压强差p1-p2,已知液面高程读数z1=18mm,z2=62mm,z3=32mm,z4=53mm,酒精密度为800kg/m3。

【解】设管轴到水银面4的高程差为ho,水密度为ρ,酒精密度为ρ1,水银密度为ρ2,则

将z的单位换成m,代入数据,得

             

【2-2】用如图所示的气压式液面计测量封闭油箱中液面高程h。

打开阀门1,调整压缩空气的压强,使气泡开始在油箱中逸出,记下U形水银压差计的读数Δh1=150mm,然后关闭阀门1,打开阀门2,同样操作,测得Δh2=210mm。

已知a=1m,求深度h及油的密度ρ。

【解】水银密度记为ρ1。

打开阀门1时,设压缩空气压强为p1,考虑水银压差计两边液面的压差,以及油箱液面和排气口的压差,有

同样,打开阀门2时,

两式相减并化简得

代入已知数据,得

所以有

【2-3】人在海平面地区每分钟平均呼吸15次。

如果要得到同样的供氧,则在珠穆朗玛峰顶(海拔高度8848m)需要呼吸多少次?

【解】:

海平面气温T0=288,z=8848m处的气温为

峰顶压强与海平面压强的比值为

峰顶与海平面的空气密度之比为

呼吸频率与空气密度成反比,即

【2-4】如图所示,圆形闸门的半径R=0.1m,倾角α=45o,上端有铰轴,已知H1=5m,H2=1m,不计闸门自重,求开启闸门所需的提升力T。

【解】设y轴沿板面朝下,从铰轴起算。

在闸门任一点,左侧受上游水位的压强p1,右侧受下游水位的压强p2,其计算式为

平板上每一点的压强p1-p2是常数,合力为(p1-p2)A,作用点在圆心上,因此

代入已知数据,求得T=871.34N。

                

【2-5】盛水容器底部有一个半径r=2.5cm的圆形孔口,该孔口用半径R=4cm、自重G=2.452N的圆球封闭,如图所示。

已知水深H=20cm,试求升起球体所需的拉力T。

【解】用压力体求铅直方向的静水总压力Fz:

由于

因此

【2-6】如图所示的挡水弧形闸门,已知R=2m,θ=30o,h=5m,试求单位宽度所受到的静水总压力的大小。

【解】水平方向的总压力等于面EB上的水压力。

铅直方向的总压力对应的压力体为CABEDC。

【2-7】如图所示,底面积为b×b=0.2m×0.2m的方口容器,自重G=40N,静止时装水高度h=0.15m,设容器在荷重W=200N的作用下沿平面滑动,容器底与平面之间的摩擦系数f=0.3,试求保证水不能溢出的容器的最小高度。

【解】解题的关键在于求出加速度a。

如果已知加速度,就可以确定容器里水面的斜率。

考虑水、容器和重物的运动。

系统的质量M和外力分别为

因此,系统的重力加速度为

  代入数据得a=5.5898m/s2

容器内液面的方程式为

坐标原点放在水面(斜面)的中心点,由图可见,当x=-b/2时,z=H-h,代入上式,

可见,为使水不能溢出,容器最小高度为0.207m。

                       

【2-8】如图所示,液体转速计由一个直径为d1的圆筒、活塞盖以及与其连通的直径为d2两支竖直支管构成。

转速计内装液体,竖管距离立轴的距离为R,当转速为ω时,活塞比静止时的高度下降了h,试证明:

【解】活塞盖具有重量,系统没有旋转时,盖子处在一个平衡位置。

旋转时,盖子下降,竖管液面上升。

设系统静止时,活塞盖如实线所示,其高度为h1,竖管的液面高度设为H1。

此时,液体总压力等于盖子重量,设为G:

旋转时,活塞盖下降高度为h,两支竖管的液面上升高度为H。

液体压强分布的通式为

将坐标原点放在活塞盖下表面的中心,并根据竖管的液面参数确定上式的积分常数C。

当r=R,z=H1-h1+H+h时,p=pa,

因此,液体压强分布为

旋转时,液体压力、大气压力的合力应等于盖子重量,即

因盖子下表面的相对压强为

代入G式并进行积分,得到

 

代入上式,化简得 

由图中看出,活塞盖挤走的液体都进入两支竖管,因此

所以有

【2-9】如图所示,U形管角速度测量仪,两竖管距离旋转轴为R1和R2,其液面高差为Δh,试求ω的表达式。

如果R1=0.08m,R2=0.20m,Δh=0.06m,求ω的值。

【解】两竖管的液面的压强都是pa(当地大气压),因而它们都在同一等压面上,如图虚线所示。

设液面方程为

不妨设竖管中较低的液面到转盘的高度差为h。

现根据液面边界条件进行计算。

当r=R1,z=h及r=R2,z=h+Δh时

 ;

两式相减得

所以

【2-10】航标灯可用如图所示模型表示:

灯座是一个浮在水面的均质圆柱体,高度H=0.5m,底半径R=0.6m,自重G=1500N,航灯重W=500N,用竖杆架在灯座上,高度设为z。

若要求浮体稳定,z的最大值应为多少?

【解】浮体稳定时要求倾半径r大于偏心距e,即r>e

先求定倾半径r=J/V,浮体所排开的水的体积V可根据吃水深度h计算。

再求偏心距e,它等于重心与浮心的距离。

设浮体的重心为C,它到圆柱体下表面的距离设为hC,则

根据浮体稳定的要求

化简得

r,h的值已经算出,代入其它数据,有z<1.1074m

【2-11】如图所示水压机中,已知压力机柱塞直径D=25cm,水泵柱塞直径d=5cm,密封圈高度h=2.5cm,密封圈的摩擦系数f=0.15,压力机柱塞重G=981N,施于水泵柱塞上的总压力P1=882N,试求压力机最后对重物的压力F。

【解】:

P1所形成的流体静压力

压力机柱塞上的总压力

静压力作用在密封圈上的总压力为p∏Dh,方向与柱塞垂直。

所以密封圈上的摩擦力

故压力机对重物的压力为

                    

4流体运动的基本概念及方程

 【3-1】已知平面流动的速度分布为

试计算点(0,1)处的加速度。

【解】先将极坐标的速度分量换算成直角坐标的速度,然后再求直角坐标中的加速度。

代入,得

所以有:

在点(0,1)处,

算得

【3-2】验证下列速度分布满足不可压缩流体的连续性方程:

(1)

(2)

(3)

【解】:

(1)

(2)

 

(3)从速度分布的表达式看出,用极坐标比较方便。

当然,使用直角坐标也可以进行有关计算,但求导过程较为复杂。

【3-3】已知平面流场的速度分布为

,试求t=1时经过坐标原点的流线方程。

【解】对于固定时刻to,流线的微分方程为

积分得

这就是时刻to的流线方程的一般形式。

根据题意,to=1时,x=0,y=0,因此C=2

 

【3-4】如图所示的装置测量油管中某点的速度。

已知油的密度为ρ=800kg/m3,水银密度为ρ’=13600kg/m3,水银压差计的读数Δh=60mm,求该点的流速u。

【解】我们分析管流中的一条流至测压管管口的流线,即如图中的流线1-0。

这条流线从上游远处到达“L”形管口后发生弯曲,然后绕过管口,沿管壁面延伸至下游。

流体沿这条流线运动时,速度是发生变化的。

在管口上游远处,流速为u。

当流体靠近管口时,流速逐渐变小,在管口处的点0,速度变为0,压强为po,流体在管口的速度虽然变化为0,但流体质点并不是停止不动,在压差作用下,流体从点0开始作加速运动,速度逐渐增大,绕过管口之后,速度逐渐加大至u。

综上分析,可以看到,流体沿流线运动,在点1,速度为u,压强为p,在点0,速度为0,压强为po,忽略重力影响,沿流线的伯努利方程是

由此可见,只要测出压差为po-p,就可以求出速度u。

不妨设压差计的右侧水银面与流线的高差为l。

由于流线平直,其曲率半径很大,属缓变流,沿管截面压强的变化服从静压公式,因此,

式中,ρ和ρˊ分别是油和水银的密度。

将已知数据代入计算,Δh的单位应该是用m表示,Δh=0.06m,得速度为u=4.3391m/s。

【3-5】矿山排风管将井下废气派入大气。

为了测量排风的流量,在排风管出口处装有一个收缩、扩张的管嘴,其喉部处装有一个细管,下端插入水中,如图所示。

喉部流速大,压强低,细管中出现一段水柱。

已知空气密度ρ=1.25kg/m3,管径d1=400mm,d2=600mm,水柱h=45mm,试计算体积流量Q。

【解】截面1-1的管径小,速度大,压强低;截面2-2接触大气,可应用伯努利方程,即

利用连续方程,由上式得

此外细管有液柱上升,说明p1低于大气压,即

式中,ρˊ是水的密度,因此

由d1=400mm,d2=600mm可以求出A1和A2,而ρ、ρˊ、h皆已知,可算得

【3-6】如图所示,水池的水位高h=4m,池壁开有一小孔,孔口到水面高差为y,如果从孔口射出的水流到达地面的水平距离x=2m,求y的值。

如果要使水柱射出的水平距离最远,则x和y应为多少?

【解】孔口的出流速度为

流体离开孔口时,速度是沿水平方向的,但在重力作用下会产生铅直向下的运动,设流体质点从孔口

降至地面所需的时间为t,则

消去t,得

,即

解得

如果要使水柱射出最远,则因为

x是y的函数,当x达到极大值时,dx/dy=0,上式两边对y求导,得

【3-7】如图所示消防水枪的水管直径d1=0.12m,喷嘴出口直径d2=0.04m,消防人员持此水枪向距离为l=12m,高h=15m的窗口喷水,要求水流到达窗口时具有V3=10m/s的速度,试求水管的相对压强和水枪倾角θ。

【解】解题思路:

已知V3利用截面2-2和3-3的伯努利方程就可以求出V2。

而利用截面1-1和2-2的伯努利方程可以求出水管的相对压强p1-pa。

水流离开截面2-2以后可以视作斜抛运动,利用有关公式就可以求出倾角θ。

对水射流的截面2-2和截面3-3,压强相同,

将h、V3代入得V2=19.8540m/s。

对于喷嘴内的水流截面1-1和截面2-2,有

式中,p2=pa。

利用连续方程,则有

喷嘴出口水流的水平速度和铅直速度分别是V2cosθ和V2sinθ,利用斜抛物体运动公式,不难得到上抛高度h和平抛距离l的计算公式分别为

消去时间t得到

代入数据,又

上式化为

【3-8】如图所示,一个水平放置的水管在某处出现θ=30o的转弯,管径也从d1=0.3m渐变为d2=0.2m,当流量为Q=0.1m3/s时,测得大口径管段中心的表压为2.94×104Pa,试求为了固定弯管所需的外力。

【解】用pˊ表示表压,即相对压强,根据题意,图示的截面1-1的表压p1ˊ=p1-pa=2.94×104Pa,截面2-2的表压p2ˊ可根据伯努利方程求出。

而固定弯管所需的外力,则可以利用总流的动量方程求出。

取如图所示的控制体,截面1-1和2-2的平均流速分别为

弯管水平放置,两截面高程相同,故

总流的动量方程是

由于弯管水平放置,因此我们只求水平面上的力。

对于图示的控制体,x,y方向的动量方程是

代入数据,得

【3-9】宽度B=1的平板闸门开启时,上游水位h1=2m,下游水位h2=0.8m,试求固定闸门所需的水平力F。

【解】应用动量方程解本题,取如图所示的控制体,其中截面1-1应在闸门上游足够远处,以保证该处流线平直,流线的曲率半径足够大,该截面上的压强分布服从静压公式。

而下游的截面2-2应选在最小过流截面上。

由于这两个截面都处在缓变流中,总压力可按平板静水压力计算。

控制体的截面1-1上的总压力为1/2ρgh1Bh1,它是左方水体作用在控制面1-1上的力,方向从左到右。

同样地,在控制面2-2上地总压力为1/2ρgh2Bh2,它是右方

水体作用在控制面2-2上的力,方向从右到左。

另外,设固定平板所需的外力是F,分析控制体的外力时,可以看到平板对控制体的作用力的大小就是F,方向从右向左。

考虑动量方程的水平投影式:

流速和流量可根据连续性方程和伯努利方程求出:

由以上两式得

将已知数据代入动量方程,得

我们还可以推导F的一般表达式。

上面已经由连续方程和伯努利方程求出速度V2,因而

将此式代入动量方程得

【3-10】如图所示,从固定喷嘴流出一股射流,其直径为d,速度为V。

此射流冲击一个运动叶片,在叶片上流速方向转角为θ,如果叶片运动的速度为u,试求:

(1)叶片所受的冲击力;

(2)水流对叶片所作的功率;

(3)当u取什么值时,水流作功最大?

【解】射流离开喷嘴时,速度为V,截面积为A=Πd2/4,当射流冲入叶片时,水流相对于叶片的速度为V-u,显然,水流离开叶片的相对速度也是V-u。

而射流截面积仍为A。

采用固结在叶片上的动坐标,在此动坐标上观察到的水流运动是定常的,设叶片给水流的力如图所示,由动量方程得

叶片仅在水平方向有位移,水流对叶片所作功率为:

当V固定时,功率P是u的函数。

因此,当u=V/3时,水流对叶片所作的功率达到极大值。

【3-11】如图所示,两股速度大小同为V的水射流汇合后成伞状体散开,设两股射流的直径分别为d1和d2,试求散开角θ与d1、d2的关系。

如果d2=0.7d1,θ是多少度?

不计重力作用。

【解】射流暴露在大气中,不考虑重力影响,根据伯努利方程,各射流截面的流速相等。

汇合流是一个轴对称的伞状体,其截面积逐渐减小,但汇合流量总是不变的,它等于两个射流量Q1和Q2之和。

作用在水体上的外力和为零,根据动量方程,可以求出张角θ与d1、d2的关系。

当d2=0.7d1时,cosθ=0.3423,θ=70o

【3-12】如图所示,气体混合室进口高度为2B,出口高度为2b,进、出口气压都等于大气压,进口的速度u0和2u0各占高度为B,出口速度分布为

气体密度为ρ,试求气流给混合室壁面的作用力。

【解】利用连续性方程求出口轴线上的速度um:

用动量方程求合力F:

【3-13】如图所示,旋转式洒水器两臂长度不等,l1=1.2m,l2=1.5m,若喷口直径d=25mm,每个喷口的水流量为Q=3×10-3m3/s,不计摩擦力矩,求转速。

【解】水流的绝对速度等于相对速度及牵连速度的矢量和。

本题中,相对速度和牵连速度反向,都与转臂垂直。

设两个喷嘴水流的绝对速度为V1和V2,则

根据动量矩方程,有

以V1、V2代入上式,得

5相似原理及量纲分析

【4-1】液体在水平圆管中作恒定流动,管道截面沿程不变,管径为D,由于阻力作用,压强将沿流程下降,通过观察,已知两个相距为l的断面间的压强差Δp与断面平均流速V,流体密度ρ,动力粘性系数μ以及管壁表面的平均粗糙度δ等因素有关。

假设管道很长,管道进出口的影响不计。

试用π定理求Δp的一般表达式。

【解】列出上述影响因素的函数关系式

 

函数式中N=7;选取3个基本物理量,依次为几何学量D、运动学量V和动力学量ρ,三个基本物理量的量纲是

 

   

   

其指数行列式为

说明基本物理量的量纲是独立的。

可写出N-3=7-3=4个无量纲π项:

根据量纲和谐原理,各π项中的指数分别确定如下(以π1为例):

解得x1=1,y1=0,z1=0,所以

以上各π项根据需要取其倒数,但不会改变它的无量纲性质,所以

求压差Δp时,以

代入,可得

令:

,最后可得沿程水头损失公式为

上式就是沿程损失的一般表达式。

【4-2】通过汽轮机叶片的气流产生噪声,假设产生噪声的功率为P,它与旋转速度ω,叶轮直径D,空气密度ρ,声速c有关,试证明汽轮机噪声功率满足

【解】由题意可写出函数关系式

现选ω,D,ρ为基本物理量,因此可以组成两个无量纲的π项:

基于MLT量纲制可得量纲式

联立上三式求得x1=3,y1=1,z1=5所以

故有

一般常将c/ωD写成倒数形式,即ωD/c,其实质就是旋转气流的马赫数,因此上式可改写为

【4-3】水流围绕一桥墩流动时,将产生绕流阻力FD,该阻力和桥墩的宽度b(或柱墩直径D)、水流速度V、水的密度ρ、动力粘性系数μ及重力加速度g有关。

试用π定理推导绕流阻力表示式。

【解】依据题意有

现选ρ、V、b为基本物理量,由π定理,有

对于π1项,由量纲和谐定理可得

求得x1=1,y1=2,z1=2;故

对于π2项,由量纲和谐原理可得

解得x2=1,y2=1,z2=1;故

对于π3项,由量纲和谐定理可得

6管流损失和水力计算

 【5-1】动力粘性系数μ=0.072kg/(m.s)的油在管径d=0.1m的圆管中作层流运动,流量Q=3×10-3m3/s,试计算管壁的切应力τo。

【解】管流的粘性切应力的计算式为

在管流中,当r增大时,速度u减小,速度梯度为负值,因此上式使用负号。

圆管层流的速度分布为

式中,V是平均速度;r0是管道半径。

由此式可得到壁面的切应力为

由流量Q和管径d算得管流平均速度,代入上式可算出τ0:

【5-2】明渠水流的速度分布可用水力粗糙公式表示,即

式中,y坐标由渠底壁面起算。

设水深为H,试求水流中的点速度等于截面平均速度的点的深度h。

【解】:

利用分部积分法和罗彼塔法则,得

平均速度为

当点速度恰好等于平均速度时,

可见,点速度等于平均速度的位置距底面的距离为y=0.3679H,距水面的深度为h=0.6321H。

【5-3】一条输水管长l=1000m,管径d=0.3m,设计流量Q=0.055m3/s,水的运动粘性系数为ν=10-6m2/s,如果要求此管段的沿程水头损失为hf=3m,试问应选择相对粗糙度Δ/d为多少的管道。

【解】由已知数据可以计算管流的雷诺数Re和沿程水头损失系数λ。

        

由水头损失

     算得λ=0.02915。

将数据代入柯列勃洛克公式,有

可以求出λ,

【5-4】如图所示,密度ρ=920kg/m3的油在管中流动。

用水银压差计测量长度l=3m的管流的压差,其读数为Δh=90mm。

已知管径d=25mm,测得油的流量为

Q=4.5×10-4m3/s,试求油的运动粘性系数。

【解】:

式中,ρˊ=13600kg/m3是水银密度;ρ是油的密度。

代入数据,算得hf=1.2404m。

算得λ=0.2412。

设管流为层流,λ=64/Re,因此

可见油的流动状态确为层流。

因此

【5-5】不同管径的两管道的连接处出现截面突然扩大。

管道1的管径d1=0.2m,管道2的管径d1=0.3m。

为了测量管2的沿程水头损失系数λ以及截面突然扩大的局部水头损失系数ξ,在突扩处前面装一个测压管,在其它地方再装两测压管,如图所示。

已知l1=1.2m,l2=3m,测压管水柱高度h1=80mm,h2=162mm,h3=152mm,水流量Q=0.06m3/s,试求λ和ξ。

【解】在长l2的管段内,没有局部水头损失,只有沿程水头损失,因此

将数据代入上式,可得λ=0.02722。

在长l

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 工程科技 > 兵器核科学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1