电路设计总结文档格式.docx

上传人:b****6 文档编号:20091334 上传时间:2023-01-16 格式:DOCX 页数:14 大小:175.64KB
下载 相关 举报
电路设计总结文档格式.docx_第1页
第1页 / 共14页
电路设计总结文档格式.docx_第2页
第2页 / 共14页
电路设计总结文档格式.docx_第3页
第3页 / 共14页
电路设计总结文档格式.docx_第4页
第4页 / 共14页
电路设计总结文档格式.docx_第5页
第5页 / 共14页
点击查看更多>>
下载资源
资源描述

电路设计总结文档格式.docx

《电路设计总结文档格式.docx》由会员分享,可在线阅读,更多相关《电路设计总结文档格式.docx(14页珍藏版)》请在冰豆网上搜索。

电路设计总结文档格式.docx

  0欧电阻相当于很窄的电流通路,能够有效地限制环路电流,使噪声得到抑制。

电阻在所有频带上都有衰减作用(0欧电阻也有阻抗),这点比磁珠强。

1.2.跨接时用于电流回路

当分割电地平面后,造成信号最短回流路径断裂,此时,信号回路不得不绕道,形成很大的环路面积,电场和磁场的影响就变强了,容易干扰/被干扰。

在分割区上跨接0欧电阻,可以提供较短的回流路径,减小干扰。

1.3配置电路

一般,产品上不要出现跳线和拨码开关。

有时用户会乱动设置,易引起误会,为了减少维护费用,应用0欧电阻代替跳线

等焊在板子上。

空置跳线在高频时相当于天线,用贴片电阻效果好。

1.4其他用途

布线时跨线

调试/测试用

临时取代其他贴片器件

作为温度补偿器件

2.如何选择合适的电容,电阻封装

电路里常用电阻电容封装如:

电容:

0.01uF可能的封装有0603、0805

  10uF的封装有3216、3528、0805

  100uF的有7343

  320pF封装:

0603或0805

电阻:

4.7K、10k、330、33既有0603又有0805封装

选择合适的封装第一要看你的PCB空间,是不是可以放下这个器件。

一般来说,封装大的器件会比较便宜,小封装的器件因为加工进度要高一点,有可能会贵一点,然后封装大的电容耐压值会比封装小的同容量电容耐压值高,这些都是要根据你实际的需要来选择的,另外,小封装的元器件对贴装要求会高一点,比如SMT机器的精度。

如手机里面的电路板,因为空间有限,工作电压低,就可以选用0402的电阻和电容,而大容量的钽电容就多为3216等等大的封装

3.在两个芯片的引脚之间串连一个电阻

有时候两个芯片的引脚可以直接相连,有时候引脚之间(时钟线/数据线/地址线上串联电阻)之间却要加上一片电阻,如22欧,请问这是为什么?

这个电阻有什么作用?

电阻阻值如何选择?

答:

高速信号线中才考虑使用这样的电阻。

在低频情况下,一般是直接连接。

 

这个电阻有两个作用,第一是阻抗匹配。

因为信号源的阻抗很低,跟信号线之间阻抗不匹配(关于阻抗匹配,请看详述),串上一个电阻后,可改善匹配情况,以减少反射,避免振荡等。

当然也可以做降压用,用于3.3VI/O连接2.5VI/O类似的应用上面。

第二是可以减少信号边沿的陡峭程度,从而减少高频噪声以及过冲等。

因为串联的电阻,跟信号线的分布电容以及负载的输入电容等形成一个RC电路,这样就会降低信号边沿的陡峭程度。

大家知道,如果一个信号的边沿非常陡峭,含有大量的高频成分,将会辐射干扰,另外,也容易产生过冲。

另外的解释:

实际设计时,我们常用22到33欧姆的电阻,实践证明,在此范围内的电阻能够较好地抑制振铃。

但是事物总是两面的,该电阻在抑制振铃的同时,也使得信号延时增加,所以通常只用在频率几兆到几十兆赫兹的场合。

频率过低无此必要,而频率过高则此法的延时会严重影响信号传输。

另外,该电阻也往往只用在对信号完整性要求比较高的信号线上,例如读写线等,而对于一般的地址线和数据线,由于芯片设计总有一个稳定时间和保持时间,所以即使有点振铃,只要真正发生读写的时刻已

经在振铃以后,就无甚大影响。

详述(阻抗匹配)

阻抗匹配是指信号源或者传输线跟负载之间的一种合适的搭配方式。

阻抗匹配分为低频和高频两种情况讨论。

我们先从直流电压源驱动一个负载入手。

由于实际的电压源,总是有内阻的(请参看输出阻抗一问),我们可以把一个实际电压源,等效成一个理想的电压源跟一个电阻r串联的模型。

假设负载电阻为R,电源电动势为U,内阻为r,那么我们可以计算出流过电阻R的电流为:

I=U/(R+r),可以看出,负载电阻R越小,则输出电流越大。

负载R上的电压为:

Uo=IR=U/[1+(r/R)],可以看出,负载电阻R越大,则输出电压Uo越高。

再来计算一下电阻R消耗的功率为:

 

P=I2×

R=[U/(R+r)]2×

R=U2×

R/(R2+2×

r+r2)

=U2×

R/[(R-r)2+4×

r]

=U2/{[(R-r)2/R]+4×

r}

对于一个给定的信号源,其内阻r是固定的,而负载电阻R则是由我们来选择的。

注意式中[(R-r)2/R],当R=r时,[(R-r)2/R]可取得最小值0,这时负载电阻R上可获得最大输出功率Pmax=U2/(4×

r)。

即,当负载电阻跟信号源内阻相等时,负载可获得最大输出功率,这就是我们常说的阻抗匹配之一。

对于纯电阻电路,此结论同样适用于低频电路及高频电路。

当交流电路中含有容性或感性阻抗时,结论有所改变,就是需要信号源与负载阻抗的的实部相等,虚部互为相反数,这叫做共扼匹配。

在低频电路中,我们一般不考虑传输线的匹配问题,只考虑信号源跟负载之间的情况,因为低频信号的波长相对于传输线来说很长,传输线可以看成是“短线”,反射可以不考虑(可以这么理解:

因为线短,即使反射回来,跟原信号还是一样的)。

从以上分析我们可以得出结论:

如果我们需要输出电流大,则选择小的负载R;

如果我们需要输出电压大,则选择大的负载R;

如果我们需要输出功率最大,则选择跟信号源内阻匹配的电阻R。

有时阻抗不匹配还有另外一层意思,例如一些仪器输出端是在特定的负载条件下设计的,如果负载条件改变了,则可能达不到原来的性能,这时我们也会叫做阻抗失配。

在高频电路中,我们还必须考虑反射的问题。

当信号的频率很高时,则信号的波长就很短,当波长短得跟传输线长度可以比拟时,反射信号叠加在原信号上将会改变原信号的形状。

如果传输线的特征阻抗跟负载阻抗不相等(即不匹配)时,在负载端就会产生反射。

为什么阻抗不匹配时会产生反射以及特征阻抗的求解方法,牵涉到二阶偏微分方程的求解,在这里我们不细说了,有兴趣的可参看电磁场与微波方面书籍中的传输线理论。

传输线的特征阻抗(也叫做特性阻抗)是由传输线的结构以及材料决定的,而与传输线的长度,以及信号的幅度、频率等均无关。

例如,常用的闭路电视同轴电缆特性阻抗为75Ω,而一些射频设备上则常用特征阻抗为50Ω的同轴电缆。

另外还有一种常见的传输线是特性阻抗为300Ω的扁平平行线,这在农村使用的电视天线架上比较常见,用来做八木天线的馈线。

因为电视机的射频输入端输入阻抗为75Ω,所以300Ω的馈线将与其不能匹配。

实际中是如何解决这个问题的呢?

不知道大家有没有留意到,电视机的附件中,有一个300Ω到75Ω的阻抗转换器(一个塑料封装的,一端有一个圆形的插头的那个东东,大概有两个大拇指那么大)。

它里面其实就是一个传输线变压器,将300Ω的阻抗,变换成75Ω的,这样就可以匹配起来了。

这里需要强调一点的是,特性阻抗跟我们通常理解的电阻不是一个概念,它与传输线的长度无关,也不能通过使用欧姆表来测量。

为了不产生反射,负载阻抗跟传输线的特征阻抗应该相等,这就是传输线的阻抗匹配。

如果阻抗不匹配会有什么不良后果呢?

如果不匹配,则会形成反射,能量传递不过去,降低效率;

会在传输线上形成驻波(简单的理解,就是有些地方信号强,有些地方信号弱),导致传输线的有效功率容量降低;

功率发射不出去,甚至会损坏发射设备。

如果是电路板上的高速信号线与负载阻抗不匹配时,会产生震荡,辐射干扰等。

当阻抗不匹配时,有哪些办法让它匹配呢?

第一,可以考虑使用变压器来做阻抗转换,就像上面所说的电视机中的那个例子那样。

第二,可以考虑使用串联/并联电容或电感的办法,这在调试射频电路时常使用。

第三,可以考虑使用串联/并联电阻的办法。

一些驱动器的阻抗比较低,可以串联一个合适的电阻来跟传输线匹配,例如高速信号线,有时会串联一个几十欧的电阻。

而一些接收器的输入阻抗则比较高,可以使用并联电阻的方法,来跟传输线匹配,例如,485总线接收器,常在数据线终端并联120欧的匹配电阻。

为了帮助大家理解阻抗不匹配时的反射问题,我来举两个例子:

假设你在练习拳击——打沙包。

如果是一个重量合适的、硬度合适的沙包,你打上去会感觉很舒服。

但是,如果哪一天我把沙包做了手脚,例如,里面换成了铁沙,你还是用以前的力打上去,你的手可能就会受不了了——这就是负载过重的情况,会产生很大的反弹力。

相反,如果我把里面换成了很轻很轻的东西,你一出拳,则可能会扑空,手也可能会受不了——这就是负载过轻的情况。

另一个例子,不知道大家有没有过这样的经历:

就是看不清楼梯时上/下楼梯,当你以为还有楼梯时,就会出现“负载不匹配”这样的感觉了。

当然,也许这样的例子不太恰当,但我们可以拿它来理解负载不匹配时的反射情况。

4.接地问题

接地是一个极其重要的问题,有时关系到设计的成败。

(1.1也有相关说明)

首先要明确的是,所有的接地都不是理想的,在任何时候都具有分布电阻与分布电感,前者在信号频率较低时起作用,后者则在信号频率高时成为主要影响因素。

由于上述分布参数的存在,信号在经过地线的时候,会产生压降以及磁场。

若这些压

降或磁场(以及由该磁场引起的感应电压)耦合到其它电路的输入,就可能会被放大(模拟电路中)或影响信号完整性(数字电路中)。

所以,一般要求在设计时就考虑这些影响,有一个大致的原则如下:

1、在频率较低的电路中(尤其是模拟电路或模数混合电路中的模拟部分),采用单点接地,即各级放大器的地线(包括电源线)分别接到电源输出端,成为星形连接,并且在这个星的节点上接一个大电容。

这样做的目的是避免信号在地线上的压降耦合到其他放大器中。

2、在模拟电路中(尤其是小信号电路)要避免出现地线环,因为环状的地线会产生感应电流,此电流造成的感应电势是许多干扰信号的来源。

3、如果是单纯的数字电路(包括模数混合电路中的数字部分)且信号频率不高(一般不超过10兆),可以共用一组电源与地线,但是必须注意每个芯片的退耦电容必须靠近芯片的电源与地引脚。

4、在高速的数字电路(例如几十兆的信号频率)中,必须采取大面积接地,即采用4层以上的印制板,其中有一个单独的接地层。

这样做的目的是给信号提供一个最短的返回路径。

由于高速数字信号具有很高的谐波分量,所以此时地线与信号线之间构成的回路电感成为主要影响因素,信号的实际返回路径是紧贴在信号线下面的,这样构成的回路面积最小(从而电感最小)。

大面积接地提供了这样的返回路径的可能性,而采用其他的接地方式均无法提供此返回路径。

需要注意的是,要避免由于过孔或其他器件在接地平面上造成的绝缘区将信号的返回路径割断(地槽),若出现这种情况,情况会变得十分糟糕。

5、高频模拟电路,也要采取大面积接地。

但是由于此时的信号线要考虑阻抗匹配问题,所以情况更复杂一些,在这里就不展开了

5.复位电路的二极管,电容

复位电路中,放电二极管D8不可缺少。

当电源断电后,电容通过二极管D8迅速放电,待电源恢复时便可实现可靠上电自动复位。

若没有二极管D8,当电源因某种干扰瞬间断电时,由于C不能迅速将电荷放掉,待电源恢复时,MCU不能上电自动复位,导致程序运行失控。

电源瞬间断电干扰会导致程序停止正常运行,形成程序“乱飞”或进入“死循环”。

若断电干扰脉冲较宽,可以使RC迅速放电,待电源恢复后通过上电自动复位,使程序进入正常状态;

若断电干扰脉冲较窄,断电瞬间RC不能充分放电,则电源恢复后系统不能上电自动复位

低电平是复位。

上电时,电容开始充电,电压缓慢上升。

所以可以保持一段时间的低电平。

这个低电平就是用来复位的。

一段时间过后,电容上电压达到一定程度,这时复位就完成了,进入正常工作状态。

同时还可以除一些杂波的干扰,防止单片机被错误复位

高电平复位电路

6.TTL电平和COMS电平

1.TTL电平:

BJT-BJT逻辑门电路,输出高电平>

2.4V,输出低电平<

0.4V,在室温下,一般输出高电平是3.5V,输出低电平是0.2V。

最小输入高电平和低电平:

输入高电平>

=2.0V,输入低电平<

=0.8V,噪声容限是0.4V。

但是由于TTL功耗大等缺点,正逐渐被CMOS电路取代。

2.CMOS电平:

1逻辑电平电压接近于电源电压,0逻辑电平接近于0V。

而且具有很宽的噪声容限。

3.电平转换电路:

因为TTL和COMS的高低电平的值不一样(ttl5v<

==>

cmos3.3v),所以互相连接时需要电平的转换:

就是用两个电阻对电平分压。

4.驱动电路

OC门(即集电极开路门电路),OD门(即漏极开路门电路),必须外界上拉电阻和电源才能将开关电平作为高低电平用。

否则它一般只作为开关大电压和大电流负载,所以又叫做驱动门电路。

5.TTL和COMS电路比较:

1)TTL电路是电流控制器件,而coms电路是电压控制器件。

2)TTL电路的速度快,传输延迟时间短(5-10ns),但是功耗大。

COMS电路的速度慢,传输延迟时间长(25-50ns),但功耗低。

COMS电路本身的功耗与输入信号的脉冲频率有关,频率越高,芯片集越热,这是正常现象。

3)COMS电路的锁定效应:

COMS电路由于输入太大的电流,内部的电流急剧增大,除非切断电源,电流一直在增大。

这种效应就是锁定效应。

当产生锁定效应时,COMS的内部电流能达到40mA以上,很容易烧毁芯片。

防御措施:

(1)在输入端和输出端加钳位电路,使输入和输出不超过不超过规定电压。

(2)芯片的电源输入端加去耦电路,防止VDD端出现瞬间的高压。

(3)在VDD和外电源之间加线流电阻,即使有大的电流也不让它进去。

(4)当系统由几个电源分别供电时,开关要按下列顺序:

开启时,先开启COMS电路得电源,再开启输入信号和负载的电源;

关闭时,先关闭输入信号和负载的电源,再关闭COMS电路的电源。

6.COMS电路的使用注意事项

1)COMS电路时电压控制器件,它的输入总抗很大,对干扰信号的捕捉能力很强。

所以,不用的管脚不要悬空,要接上拉电阻或者下拉电阻,给它一个恒定的电平。

2)输入端接低内组的信号源时,要在输入端和信号源之间要串联限流电阻,使输入的电流限制在1mA之内。

3)当接长信号传输线时,在COMS电路端接匹配电阻。

4)当输入端接大电容时,应该在输入端和电容间接保护电阻。

电阻值为R=V0/1mA.V0是外界电容上的电压。

5)COMS的输入电流超过1mA,就有可能烧坏COMS。

7.TTL门电路中输入端负载特性(输入端带电阻特殊情况的处理):

1)悬空时相当于输入端接高电平。

因为这时可以看作是输入端接一个无穷大的电阻。

2)在门电路输入端串联10K电阻后再输入低电平,输入端出呈现的是高电平而不是低电平。

因为由TTL门电路的输入端负载特性可知,只有在输入端接的串联电阻小于910欧时,它输入来的低电平信号才能被门电路识别出来,串联电阻再大的话输入端就一直呈现高电平。

这个一定要注意。

COMS门电路就不用考虑这些了。

8.

TTL电路有集电极开路OC门,MOS管也有和集电极对应的漏极开路的OD门,它的输出就叫做开漏输出。

OC门在截止时有漏电流输出,那就是漏电流,为什么有漏电流呢?

那是因为当三机管截止的时候,它的基极电流约等于0,但是并不是真正的为0,经过三极管的集电极的电流也就不是真正的0,而是约0。

而这个就是漏电流。

开漏输出:

OC门的输出就是开漏输出;

OD门的输出也是开漏输出。

它可以吸收很大的电流,但是不能向外输出的电流。

所以,为了能输入和输出电流,它使用的时候要跟电源和上拉电阻一齐用。

OD门一般作为输出缓冲/驱动器、电平转换器以及满足吸收大负载电流的需要。

7.上拉电阻,下拉电阻

如图为上拉电阻R1用法,下拉电阻把5V换成GND

  1、当TTL电路驱动COMS电路时,如果TTL电路输出的高电平低于COMS电路的最低高电平(一般为3.5V),这时就需要在TTL的输出端接上拉电阻,以提高输出高电平的值。

  2、OC门电路必须加上拉电阻,以提高输出的高电平值。

  3、为加大输出引脚的驱动能力,有的单片机管脚上也常使用上拉电阻。

  4、在CMOS芯片上,为了防止静电造成损坏,不用的管脚不能悬空,一般接上拉电阻产生降低输入阻抗,提供泄荷通路。

  5、芯片的管脚加上拉电阻来提高输出电平,从而提高芯片输入信号的噪声容限增强抗干扰能力。

  6、提高总线的抗电磁干扰能力。

管脚悬空就比较容易接受外界的电磁干扰。

  7、长线传输中电阻不匹配容易引起反射波干扰,加上下拉电阻是电阻匹配,有效的抑制反射波干扰。

  上拉电阻:

  就是从电源高电平引出的电阻接到输出

  1,如果电平用OC(集电极开路,TTL)或OD(漏极开路,COMS)输出,那么不用上拉电阻是不能工作的,这个很容易理解,管子没有电源就不能输出高电平了。

  2,如果输出电流比较大,输出的电平就会降低(电路中已经有了一个上拉电阻,但是电阻太大,压降太高),就可以用上拉电阻提供电流分量,把电平“拉高”。

(就是并一个电阻在IC内部的上拉电阻上,让它的压降小一点)。

当然管子按需要该工作在线性范围的上拉电阻不能太小。

当然也会用这个方式来实现门电路电平的匹配。

  需要注意的是,上拉电阻太大会引起输出电平的延迟。

(RC延时)

  一般CMOS门电路输出不能给它悬空,都是接上拉电阻设定成高电平。

  下拉电阻:

和上拉电阻的原理差不多,只是拉到GND去而已。

那样电平就会被拉低。

下拉电阻一般用于设定低电平或者是阻抗匹配(抗回波干扰)。

  上拉电阻阻值的选择原则包括:

  1、从节约功耗及芯片的灌电流能力考虑应当足够大;

电阻大,电流小。

  2、从确保足够的驱动电流考虑应当足够小;

电阻小,电流大。

  3、对于高速电路,过大的上拉电阻可能边沿变平缓。

综合考虑

以上三点,通常在1k到10k之间选取。

对下拉电阻也有类似道理

8.信号串扰

参考本目录下的链接信号串扰.doc

8.1串扰信号产生的机理

串扰是指一个信号在传输通道上传输时,因电磁耦合而对相邻的传输线产生不期望的影响,在被干扰信号表现为被注入了一定的耦合电压和耦合电流。

过大的串扰可能引起电路的误触发,导致系统无法正常工作。

如图1的电路,AB之间的门电路称为干扰源网络(AggressorLine),CD之间的门电路称为被干扰源网络(VictimLine)。

只要干扰源一改变状态,我们就可以观察到受害源处的脉冲串扰。

  

  图1 串扰的干扰源网络和被干扰网络

  信号在传输通道上传输对相邻的传输线上引起两类不同的噪声信号:

容性耦合信号与感性耦合信号,如图2、图3所示。

容性耦合是由于干扰源(Aggressor)上的电压(Vs)变化在被干扰对象(Victim)上引起感应电流(i)通过互容Cm而导致的电磁干扰,而感性耦合则是由于干扰源上的电流(Is)变化产生的磁场在被干扰对象上引起感应电压(V)通过互感(Lm)而导致的电磁干扰。

  图2 电容耦合示意图

图3 电感耦合示意图

8.2信号串扰的原因

1.线间距P与两线平行长度L对串扰大小的影响

串扰电压的大小与两线的间距成反比,而与两线的平行长度成正比,当布线空间较小或布线密度较大时,在实际高速电路中进行布线时,为防止高频信号线对与其相邻的信号线的串扰可能会导致门级的误触发,在布线资源允许的条件下,应近可能地拉开线间距(差分线除外)并减小两根或多根信号线的平行长度,必要时可采用固定最大平行长度推挤的布线方式(也称jog式走线)(或者“蛇”行线),这样既可以节省紧张的布线资源,又可以有效地抑制串扰。

Jog试走线

2.地平面对串扰的影响

传输线与地平面之间的电介质层的厚度对串扰的影响很大,对于同一布线结构,当电介质层的厚度增大一倍时,串扰明显加大

8.3.解决办法

①如果布线空间允许的话,增加线与线之间的间距;

②计叠层时,在满足阻抗要求的条件下,减少信号层与地层之间的高度;

③把关键的高速信号设计成差分线对,如高速系统时钟;

④如果两个信号层是邻近的,布线时按正交方向进行布线,以减少层与层之间的耦合;

⑤将高速信号线设计成带状线或嵌入式微带线;

⑥走线时,减少并行线长度,可以以jog方式布线;

⑦在满足系统设计要求的情况下,尽量使用低速器件

9.微带线和带状线

带状线:

Stripline是埋在PCB内部的带状走线,如下图所示

蓝色部分是导体,绿色部分是PCB的绝缘电介质,stripline是嵌在两层导体之间的带状导线。

因为stripline是嵌在两层导体之间,所以它的电场分布都在两个包它的导体(平面)之间,不会辐射出去能量,也不会受到外部的辐射干扰。

但是由于它的周围全是电介质(介电常数比1大),所以信号在stripline中的传输速度比在microstripline中慢

微带线:

microstripline是附在PCB表面的带状走线,如下图所示

蓝色部分是导体,绿色部分是PCB的绝缘电介质,上面的蓝色小块儿是microstripline

其中黄色部分是环氧有机材料。

由于microstripline(微带线)的一面裸露在空气里面(可以向周围形成辐射或受到周围的辐射干扰),而另一面附在PCB的绝缘电介质上,所以它形成的电场一部分分布在空中,另一部分分布在PCB的绝缘介质中。

但是microstripline中的信号传输速度要比stripline中的信号传输速度快,这是其突出的优点!

同阻抗带状线因为走线窄所以损耗大。

10.差分线

粗略文旦见差分线.doc,有待总结,如图为差分线用法

差分线对的工作原理是使接收到的信号等于两个互补并且彼此互为参考的信号之间的差值,因此可以极大地降低信号的电气噪声效应。

而单端信号的工作原理是接收信号等于信号与电源或地之间的差值,因此信号或电源系统上的噪声不能被有效抵消。

这就是差分信号对高速信号如此

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 农学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1