ch03solutionssolved editWord文件下载.docx
《ch03solutionssolved editWord文件下载.docx》由会员分享,可在线阅读,更多相关《ch03solutionssolved editWord文件下载.docx(7页珍藏版)》请在冰豆网上搜索。
(b)Thereisoneinitialnode(I)forHanselmakingthefirstmove;
fourdecisionnodes(D)includingtheinitialnode,whichrepresentthenodeswhereHanselorGretelmakeadecision;
andnineterminalnodes(T).
(c)Thereisoneinitialnode(I)forHanselmakingthefirstmove;
fivedecisionnodes(D)includingtheinitialnode,whichrepresentthenodeswhereHanselorGretelmakeadecision;
andeightterminalnodes(T).
S2.Forthisquestion,rememberthatactionswiththesamelabel,iftakenatdifferentnodes,aredifferentcomponentsofastrategy.Toclarifytheanswers,thenodesonthetreesarelabeled1,2,etc.(inadditiontoshowingthenameoftheplayeractingthere).ActionsinastrategyaredesignatedasN1(meaningNatnode1),etc.ThetreesarebelowinthesolutionstoExerciseS3.Numberingofnodesbeginsatthefarleftandproceedstotheright,withnodesequidistanttotherightoftheinitialnodeandnumberedfromtoptobottom.
(a)Scarecrowhastwostrategies:
(1)Nor
(2)S.Tinmanhastwostrategies:
(1)tifScarecrowplaysN,or
(2)bifScarecrowplaysN.
(b)Scarecrowhastwoactionsatthreedifferentnodes,soScarecrowhaseightstrategies,2•2•2=8.Todescribethestrategiesaccurately,wemustspecifyaplayer’sactionateachdecisionnode.Scarecrowdecidesatnodes1,3,and5,sowewilllabelastrategybylistingtheactionandthenodenumber.Forexample,todescribeScarecrowchoosingNateachnode,wewrite(N1,N3,N5).Accordingly,theeightstrategiesforScarecroware:
(N1,N3,N5),(N1,N3,S5),(N1,S3,N5),(S1,N3,N5),(N1,S3,S5),(S1,N3,S5),(S1,S3,N5),and(S1,S3,S5).
Tinmanhastwoactionsatthreedifferentnodes,soTinmanalsohaseightstrategies,2•2•2=8.Tinman’sstrategiesare:
(n2,n4,n6),(n2,n4,s6),(n2,s4,n6),(s2,n4,n6),(n2,s4,s6),(s2,n4,s6),(s2,s4,n6),and(s2,s4,s6).
(c)Scarecrowhastwoactionsatthreedecisionnodes,soScarecrowhaseightstrategies:
2•2•2=8.Scarecrow’sstrategiesare:
(N1,N4,N5),(N1,N4,S5),(N1,S4,N5),(S1,N4,N5),(N1,S4,S5),(S1,N4,S5),(S1,S4,N5),and(S1,S4,S5).Tinmanhastwostrategies:
(t2)and(b2).Lionhastwostrategies:
(u2)and(d2).
S3.(a)BeginningwithTinman,weseethatTinmanprefersapayoffof2over1,soTinmanchoosest.WithTinmanchoosingt,Scarecrowreceivesapayoffof0forNand1forS,soScarecrowchoosesS.Thus,therollbackequilibriumisScarecrow’schoosingSandTinman’schoosingt(eventhoughhewon’thaveachancetoplayit).Tinman’sactiondoesnotaffecttherollbackequilibrium,becauseScarecrowexpectsTinmantochooset,soScarecrowbestrespondsbychoosingS.
(b)ThegraphbelowindicateswhichactionScarecrowandTinmanchooseateachnode.Scarecrow’sequilibriumstrategyisS1,S3,N5,andTinman’sisn2,n4,s6.yieldingtheequilibriumpayoff(4,5).
(c)ThegraphbelowindicateswhichactionScarecrow,Tinman,andLionchooseateachnode.Scarecrow’sequilibriumstrategyisN1,N4,N5;
Tinman’sisb;
andLion’sisd,yieldingthepayoff(2,3,2).
S4.Thegametreeisshownbelow.
Boeingprefers$300milliontolosing$100million,soBoeingwillpeacefullyaccommodateAirbus’sentryintothemarket.AirbusexpectsBoeingtoaccommodateitsentrypeacefully,soitcanmake$300millionbyentering,ornothingbynotentering,soAirbuswillenterthemarket.Thus,therollbackequilibriumisAirbus’senteringthemarketandBoeing’speacefullyaccommodating,withapayofftoeachfirmof$300millioninprofit.
S5.(a)ForBarneytowinthegame,hemustremovethelastmatchstick,whichmeansthatifheleavesFred1to4matches,FredcanremoveallofthemandBarneywouldlose,soBarneymustleavemorethan4matchsticks.Becausethereare6matchsticksandBarneymusttakeatleast1,Barneyshouldremoveonly1matchstick,whichwillleaveFredwith5matchsticks.NomatterwhatFreddoes,Barney,onhisnextturn,willbeabletoremovealltheremainingmatchstickstowinthegame.Moreprecisely,Barneyshouldtake1matchstickonhisfirstturn.IfFredtakesfmatchsticks,Barneyshouldtake(5–f)matchsticks.
(b)Frompart(a),weknowthatwhomeverisleftwith5matchstickswilllosethegame,soBarneyshouldremoveenoughmatchstickstoleaveFredonly5.IfBarneyleavesFred6to9matches,thenFredwillleaveBarneywith5,andBarneywilllose,soBarneymustleaveFredwithmorethan9matches.Also,ifBarneyleaves11matches,Fredcanensureheisleftwith6to9matchesbychoosingonly1match,leavingBarneywith10matchesandnowaytokeepFredfromhaving6to9matches.Thus,Barneymusttake2matches,leavingFredwith10,andmustchoose(5–f)matchesoneachsubsequentturn.
Anotherwaytoviewthisproblemisthataplayerwillloseifhisturnbeginswith5matches.Thus,eachplayeralwayswantstoremovematchstickstoleavehisopponentwith5.Sinceweknowwhathappenswhen5matchsticksremain,wecandividethenumberofremainingmatchsticksintounitsof5.Forexample,12matchstickscanbedividedintotwounitsof5with2extra.BarneywantstoforceFredtohavesomemultipleof5,soBarneyremoves2matchesatfirst,andthen(5–f)matchesineachofhissubsequentturns.
(c)Thefullgamehas21matchsticks,andFredbegins.Asdescribedin(b),FredwantstoleaveBarneywithsomemultipleof5,and21is4unitsof5with1extra.SoFredshouldremove1matchstickonhisfirstturn,andthen(5–b)matchsticksonhissubsequentturns,wherebisthenumberofsticksthatBarneyhasjustremoved.Withoptimalplay,Fredwillwineverytime.
(d)Eachplayerwantstoleavetheotherplayeramultipleof5matchsticks.Sooneachturn,theplayershoulddividetheremainingmatchsticksby5andremovetheremainder.Iftheremainderis0andmorethan4matchsticksremain,thentheplayerisstuckwithamultipleof5.Sothatplayershouldrandomlychoose1to4matchsticks,hopingthattheopponentwillmakeamistakeonasubsequentturn.If4orfewermatchsticksremain,thentheplayershouldremoveallofthemtowinthegame.
S6.(a)Thegametreeis:
(b)Thegraphinpart(a)indicatesthefourrollbackequilibria,whichcanbedescribedasFred’staking1to4matchsticks,andthenBarney’sremovingallremainingmatchsticks.LettingthefirstnumberrepresentthenumberofmatchsticksremovedbyFredandthesecondbyBarney,thefourrollbackequilibriamaybedescribedas:
(1,4),(2,3),(3,2),and(4,1).
(c)With5matchsticksatthebeginningofthegame,thereisasecond-moveradvantage,becausenomatterwhatquantitythefirstmoverremoves,thesecondmovercanremoveallremainingmatchstickstowinthegame.
(d)Thereismorethanonerollbackequilibrium,becausesolongasBarneyplaysoptimally,anyofFred’sfouractionsattheinitialnodeleadstothesamepayoff.Thusinequilibrium,heisindifferentamongthosefouractionsatthatnode.
S7.(a)Thegametreeisshownbelow.
(b)TherollbackequilibriumisLion1eatstheslave,Lion2doesnoteatLion1,andLion3wouldeatLion2ifgiventheopportunity(whichheisnotinequilibrium).
(c)Thereisafirst-moveradvantage,becauseLion3willalwayseatLion2ifable,soLion2hasanincentivetonoteatLion1inordertoprotecthimselffromLion3.
(d)Eachlionhastwoactionsatasinglenode(eat,don’teat),soeachhastwocompletestrategies.
S8.(a)Thegametreeisgivenbelow.
(b)Rollbackpruningisillustratedbyarrowsonbranchesofthetree.TheequilibriumentailsFrieda’schoosingRural;
BigGiant’salwayschoosingUrban(UR,orUifUandUifR);
andTitan’schoosingUrbanunlessbothFrieda’sandTitanhavechosenRural(UUUR).Theequilibriumpayoffsare(2,5,5)tothestoresinorderoftheirmoves.
S9.(a)Thegametreeisshownbelow.
(b)TheProposerhasonenodewith11actions;
thustheProposerhas11completestrategies.Wecanlisttheseasthesplitproposed,withthefirstnumberindicatingtheportionfortheProposerandthesecondfortheResponder.The11completestrategiesare:
0/10,1/9,2/8,3/7,4/6,5/5,6/4,7/3,8/2,9/1,and10/0.
TheResponderhas11nodeswithactionsAcceptorRejectateachnode;
thustheResponderhas211,or2,048completestrategies.Someexamplesofpossiblestrategiesincludeacceptingonly5/5,acceptingonly10,acceptingonlyoddnumbers,andrejectingalloffers.
(c)AssumingthattheplayerscareonlyabouttheircashpayoffsmeansthattheResponderwilldefinitelyacceptanypositiveofferandwillbeindifferentbetweenAcceptingandRejectingwhenofferednothing.IftheProposerassumesthattheResponderwillacceptanofferof$0whenindifferent,thentherollbackequilibriumistooffer$0andforittobeaccepted.However,althoughtheProposermaybeunsureoftheResponder’sactioninthefaceofindifference,hecanexpecttheRespondertoacceptanofferof$1.IfthereisuncertaintyabouttheResponder’sactionwhenshe’sindifferent,therollbackequilibriumoccurswheretheProposeroffers$1andthatofferisaccepted.
(d)BecausePeteknowsRachelwillacceptanyofferof$3ormore,Petecanmaximizehispayoffbyofferingonly$3.
(e)TherearemanypossibleutilitiesthatmayrepresentRachel’sutility.Onecommonutilityisfairness,inwhichRachelreceivesautilityequaltothedollaramountiftheofferiswithin40%to60%ofthetotalam