ch03solutionssolved editWord文件下载.docx

上传人:b****5 文档编号:19811450 上传时间:2023-01-10 格式:DOCX 页数:7 大小:99.50KB
下载 相关 举报
ch03solutionssolved editWord文件下载.docx_第1页
第1页 / 共7页
ch03solutionssolved editWord文件下载.docx_第2页
第2页 / 共7页
ch03solutionssolved editWord文件下载.docx_第3页
第3页 / 共7页
ch03solutionssolved editWord文件下载.docx_第4页
第4页 / 共7页
ch03solutionssolved editWord文件下载.docx_第5页
第5页 / 共7页
点击查看更多>>
下载资源
资源描述

ch03solutionssolved editWord文件下载.docx

《ch03solutionssolved editWord文件下载.docx》由会员分享,可在线阅读,更多相关《ch03solutionssolved editWord文件下载.docx(7页珍藏版)》请在冰豆网上搜索。

ch03solutionssolved editWord文件下载.docx

(b)Thereisoneinitialnode(I)forHanselmakingthefirstmove;

fourdecisionnodes(D)includingtheinitialnode,whichrepresentthenodeswhereHanselorGretelmakeadecision;

andnineterminalnodes(T).

(c)Thereisoneinitialnode(I)forHanselmakingthefirstmove;

fivedecisionnodes(D)includingtheinitialnode,whichrepresentthenodeswhereHanselorGretelmakeadecision;

andeightterminalnodes(T).

S2.Forthisquestion,rememberthatactionswiththesamelabel,iftakenatdifferentnodes,aredifferentcomponentsofastrategy.Toclarifytheanswers,thenodesonthetreesarelabeled1,2,etc.(inadditiontoshowingthenameoftheplayeractingthere).ActionsinastrategyaredesignatedasN1(meaningNatnode1),etc.ThetreesarebelowinthesolutionstoExerciseS3.Numberingofnodesbeginsatthefarleftandproceedstotheright,withnodesequidistanttotherightoftheinitialnodeandnumberedfromtoptobottom.

(a)Scarecrowhastwostrategies:

(1)Nor

(2)S.Tinmanhastwostrategies:

(1)tifScarecrowplaysN,or

(2)bifScarecrowplaysN.

(b)Scarecrowhastwoactionsatthreedifferentnodes,soScarecrowhaseightstrategies,2•2•2=8.Todescribethestrategiesaccurately,wemustspecifyaplayer’sactionateachdecisionnode.Scarecrowdecidesatnodes1,3,and5,sowewilllabelastrategybylistingtheactionandthenodenumber.Forexample,todescribeScarecrowchoosingNateachnode,wewrite(N1,N3,N5).Accordingly,theeightstrategiesforScarecroware:

(N1,N3,N5),(N1,N3,S5),(N1,S3,N5),(S1,N3,N5),(N1,S3,S5),(S1,N3,S5),(S1,S3,N5),and(S1,S3,S5).

Tinmanhastwoactionsatthreedifferentnodes,soTinmanalsohaseightstrategies,2•2•2=8.Tinman’sstrategiesare:

(n2,n4,n6),(n2,n4,s6),(n2,s4,n6),(s2,n4,n6),(n2,s4,s6),(s2,n4,s6),(s2,s4,n6),and(s2,s4,s6).

(c)Scarecrowhastwoactionsatthreedecisionnodes,soScarecrowhaseightstrategies:

2•2•2=8.Scarecrow’sstrategiesare:

(N1,N4,N5),(N1,N4,S5),(N1,S4,N5),(S1,N4,N5),(N1,S4,S5),(S1,N4,S5),(S1,S4,N5),and(S1,S4,S5).Tinmanhastwostrategies:

(t2)and(b2).Lionhastwostrategies:

(u2)and(d2).

S3.(a)BeginningwithTinman,weseethatTinmanprefersapayoffof2over1,soTinmanchoosest.WithTinmanchoosingt,Scarecrowreceivesapayoffof0forNand1forS,soScarecrowchoosesS.Thus,therollbackequilibriumisScarecrow’schoosingSandTinman’schoosingt(eventhoughhewon’thaveachancetoplayit).Tinman’sactiondoesnotaffecttherollbackequilibrium,becauseScarecrowexpectsTinmantochooset,soScarecrowbestrespondsbychoosingS.

(b)ThegraphbelowindicateswhichactionScarecrowandTinmanchooseateachnode.Scarecrow’sequilibriumstrategyisS1,S3,N5,andTinman’sisn2,n4,s6.yieldingtheequilibriumpayoff(4,5).

(c)ThegraphbelowindicateswhichactionScarecrow,Tinman,andLionchooseateachnode.Scarecrow’sequilibriumstrategyisN1,N4,N5;

Tinman’sisb;

andLion’sisd,yieldingthepayoff(2,3,2).

 

S4.Thegametreeisshownbelow.

Boeingprefers$300milliontolosing$100million,soBoeingwillpeacefullyaccommodateAirbus’sentryintothemarket.AirbusexpectsBoeingtoaccommodateitsentrypeacefully,soitcanmake$300millionbyentering,ornothingbynotentering,soAirbuswillenterthemarket.Thus,therollbackequilibriumisAirbus’senteringthemarketandBoeing’speacefullyaccommodating,withapayofftoeachfirmof$300millioninprofit.

S5.(a)ForBarneytowinthegame,hemustremovethelastmatchstick,whichmeansthatifheleavesFred1to4matches,FredcanremoveallofthemandBarneywouldlose,soBarneymustleavemorethan4matchsticks.Becausethereare6matchsticksandBarneymusttakeatleast1,Barneyshouldremoveonly1matchstick,whichwillleaveFredwith5matchsticks.NomatterwhatFreddoes,Barney,onhisnextturn,willbeabletoremovealltheremainingmatchstickstowinthegame.Moreprecisely,Barneyshouldtake1matchstickonhisfirstturn.IfFredtakesfmatchsticks,Barneyshouldtake(5–f)matchsticks.

(b)Frompart(a),weknowthatwhomeverisleftwith5matchstickswilllosethegame,soBarneyshouldremoveenoughmatchstickstoleaveFredonly5.IfBarneyleavesFred6to9matches,thenFredwillleaveBarneywith5,andBarneywilllose,soBarneymustleaveFredwithmorethan9matches.Also,ifBarneyleaves11matches,Fredcanensureheisleftwith6to9matchesbychoosingonly1match,leavingBarneywith10matchesandnowaytokeepFredfromhaving6to9matches.Thus,Barneymusttake2matches,leavingFredwith10,andmustchoose(5–f)matchesoneachsubsequentturn.

Anotherwaytoviewthisproblemisthataplayerwillloseifhisturnbeginswith5matches.Thus,eachplayeralwayswantstoremovematchstickstoleavehisopponentwith5.Sinceweknowwhathappenswhen5matchsticksremain,wecandividethenumberofremainingmatchsticksintounitsof5.Forexample,12matchstickscanbedividedintotwounitsof5with2extra.BarneywantstoforceFredtohavesomemultipleof5,soBarneyremoves2matchesatfirst,andthen(5–f)matchesineachofhissubsequentturns.

(c)Thefullgamehas21matchsticks,andFredbegins.Asdescribedin(b),FredwantstoleaveBarneywithsomemultipleof5,and21is4unitsof5with1extra.SoFredshouldremove1matchstickonhisfirstturn,andthen(5–b)matchsticksonhissubsequentturns,wherebisthenumberofsticksthatBarneyhasjustremoved.Withoptimalplay,Fredwillwineverytime.

(d)Eachplayerwantstoleavetheotherplayeramultipleof5matchsticks.Sooneachturn,theplayershoulddividetheremainingmatchsticksby5andremovetheremainder.Iftheremainderis0andmorethan4matchsticksremain,thentheplayerisstuckwithamultipleof5.Sothatplayershouldrandomlychoose1to4matchsticks,hopingthattheopponentwillmakeamistakeonasubsequentturn.If4orfewermatchsticksremain,thentheplayershouldremoveallofthemtowinthegame.

S6.(a)Thegametreeis:

(b)Thegraphinpart(a)indicatesthefourrollbackequilibria,whichcanbedescribedasFred’staking1to4matchsticks,andthenBarney’sremovingallremainingmatchsticks.LettingthefirstnumberrepresentthenumberofmatchsticksremovedbyFredandthesecondbyBarney,thefourrollbackequilibriamaybedescribedas:

(1,4),(2,3),(3,2),and(4,1).

(c)With5matchsticksatthebeginningofthegame,thereisasecond-moveradvantage,becausenomatterwhatquantitythefirstmoverremoves,thesecondmovercanremoveallremainingmatchstickstowinthegame.

(d)Thereismorethanonerollbackequilibrium,becausesolongasBarneyplaysoptimally,anyofFred’sfouractionsattheinitialnodeleadstothesamepayoff.Thusinequilibrium,heisindifferentamongthosefouractionsatthatnode.

S7.(a)Thegametreeisshownbelow.

(b)TherollbackequilibriumisLion1eatstheslave,Lion2doesnoteatLion1,andLion3wouldeatLion2ifgiventheopportunity(whichheisnotinequilibrium).

(c)Thereisafirst-moveradvantage,becauseLion3willalwayseatLion2ifable,soLion2hasanincentivetonoteatLion1inordertoprotecthimselffromLion3.

(d)Eachlionhastwoactionsatasinglenode(eat,don’teat),soeachhastwocompletestrategies.

S8.(a)Thegametreeisgivenbelow.

(b)Rollbackpruningisillustratedbyarrowsonbranchesofthetree.TheequilibriumentailsFrieda’schoosingRural;

BigGiant’salwayschoosingUrban(UR,orUifUandUifR);

andTitan’schoosingUrbanunlessbothFrieda’sandTitanhavechosenRural(UUUR).Theequilibriumpayoffsare(2,5,5)tothestoresinorderoftheirmoves.

S9.(a)Thegametreeisshownbelow.

(b)TheProposerhasonenodewith11actions;

thustheProposerhas11completestrategies.Wecanlisttheseasthesplitproposed,withthefirstnumberindicatingtheportionfortheProposerandthesecondfortheResponder.The11completestrategiesare:

0/10,1/9,2/8,3/7,4/6,5/5,6/4,7/3,8/2,9/1,and10/0.

TheResponderhas11nodeswithactionsAcceptorRejectateachnode;

thustheResponderhas211,or2,048completestrategies.Someexamplesofpossiblestrategiesincludeacceptingonly5/5,acceptingonly10,acceptingonlyoddnumbers,andrejectingalloffers.

(c)AssumingthattheplayerscareonlyabouttheircashpayoffsmeansthattheResponderwilldefinitelyacceptanypositiveofferandwillbeindifferentbetweenAcceptingandRejectingwhenofferednothing.IftheProposerassumesthattheResponderwillacceptanofferof$0whenindifferent,thentherollbackequilibriumistooffer$0andforittobeaccepted.However,althoughtheProposermaybeunsureoftheResponder’sactioninthefaceofindifference,hecanexpecttheRespondertoacceptanofferof$1.IfthereisuncertaintyabouttheResponder’sactionwhenshe’sindifferent,therollbackequilibriumoccurswheretheProposeroffers$1andthatofferisaccepted.

(d)BecausePeteknowsRachelwillacceptanyofferof$3ormore,Petecanmaximizehispayoffbyofferingonly$3.

(e)TherearemanypossibleutilitiesthatmayrepresentRachel’sutility.Onecommonutilityisfairness,inwhichRachelreceivesautilityequaltothedollaramountiftheofferiswithin40%to60%ofthetotalam

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 自然科学 > 物理

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1