PCB布线与布局设计规范Word文件下载.docx
《PCB布线与布局设计规范Word文件下载.docx》由会员分享,可在线阅读,更多相关《PCB布线与布局设计规范Word文件下载.docx(11页珍藏版)》请在冰豆网上搜索。
18、增大线路间的距离是减小电容耦合的最好办法
19、在正式布线之前,首要的一点是将线路分类。
主要的分类方法是按功率电平来进行,以每30dB功率电平分成若干组
20、不同分类的导线应分别捆扎,分开敷设。
对相邻类的导线,在采取屏蔽或扭绞等措施后也可归在一起。
分类敷设的线束间的最小距离是50~75mm
21、电阻布局时,放大器、上下拉和稳压整流电路的增益控制电阻、偏置电阻(上下拉)要尽可能靠近放大器、有源器件及其电源和地以减轻其去耦效应(改善瞬态响应时间)。
22、旁路电容靠近电源输入处放置
23、去耦电容置于电源输入处。
尽可能靠近每个IC
24、PCB基本特性阻抗:
由铜和横切面面积的质量决定。
具体为:
1盎司0.49毫欧/单位面积
电容:
C=EoErA/h,Eo:
自由空间介电常数,Er:
PCB基体介电常数,A:
电流到达的范围,h:
走线间距
电感:
平均分布在布线中,约为1nH/m
盎司铜线来讲,在0.25mm(10mil)厚的FR4碾压下,位于地线层上方的)0.5mm宽,20mm长的线能产生9.8毫欧的阻抗,20nH的电感及与地之间1.66pF的耦合电容。
25、PCB布线基本方针:
增大走线间距以减少电容耦合的串扰;
平行布设电源线和地线以使PCB电容达到最佳;
将敏感高频线路布设在远离高噪声电源线的位置;
加宽电源线和地线以减少电源线和地线的阻抗;
26、分割:
采用物理上的分割来减少不同类型信号线之间的耦合,尤其是电源与地线
27、局部去耦:
对于局部电源和IC进行去耦,在电源输入口与PCB之间用大容量旁路电容进行低频脉动滤波并满足突发功率要求,在每个IC的电源与地之间采用去耦电容,这些去耦电容要尽可能接近引脚。
28、布线分离:
将PCB同一层内相邻线路之间的串扰和噪声耦合最小化。
采用3W规范处理关键信号通路。
29、保护与分流线路:
对关键信号采用两面地线保护的措施,并保证保护线路两端都要接地
30、单层PCB:
地线至少保持1.5mm宽,跳线和地线宽度的改变应保持最低
31、双层PCB:
优先使用地格栅/点阵布线,宽度保持1.5mm以上。
或者把地放在一边,信号电源放在另一边
32、保护环:
用地线围成一个环形,将保护逻辑围起来进行隔离
33、PCB电容:
多层板上由于电源面和地面绝缘薄层产生了PCB电容。
其优点是据有非常高的频率响应和均匀的分布在整个面或整条线上的低串连电感。
等效于一个均匀分布在整板上的去耦电容。
34、高速电路和低速电路:
高速电路要使其接近接地面,低速电路要使其接近于电源面。
地的铜填充:
铜填充必须确保接地。
35、相邻层的走线方向成正交结构,避免将不同的信号线在相邻层走成同一方向,以减少不必要的层间窜扰;
当由于板结构限制(如某些背板)难以避免出现该情况,特别是信号速率较高时,应考虑用地平面隔离各布线层,用地信号线隔离各信号线;
36、不允许出现一端浮空的布线,为避免“天线效应”。
37、阻抗匹配检查规则:
同一网格的布线宽度应保持一致,线宽的变化会造成线路特性阻抗的不均匀,当传输的速度较高时会产生反射,在设计中应避免这种情况。
在某些条件下,可能无法避免线宽的变化,应该尽量减少中间不一致部分的有效长度。
38、防止信号线在不同层间形成自环,自环将引起辐射干扰。
39、短线规则:
布线尽量短,特别是重要信号线,如时钟线,务必将其振荡器放在离器件很近的地方。
40、倒角规则:
PCB设计中应避免产生锐角和直角,产生不必要的辐射,同时工艺性能也不好,所有线与线的夹角应大于135度
41、滤波电容焊盘到连接盘的线线应采用0.3mm的粗线连接,互连长度应≤1.27mm。
42、一般情况下,将高频的部分设在接口部分,以减少布线长度。
同时还要考虑到高/低频部分地平面的分割问题,通常采用将二者的地分割,再在接口处单点相接。
43、对于导通孔密集的区域,要注意避免在电源和地层的挖空区域相互连接,形成对平面层的分割,从而破坏平面层的完整性,并进而导致信号线在地层的回路面积增大。
44、电源层投影不重叠准则:
两层板以上(含)的PCB板,不同电源层在空间上要避免重叠,主要是为了减少不同电源之间的干扰,特别是一些电压相差很大的电源之间,电源平面的重叠问题一定要设法避免,难以避免时可考虑中间隔地层。
45、3W规则:
为减少线间窜扰,应保证线间距足够大,当线中心距不少于3倍线宽时,则可保持70%的电场不互相干扰,如要达到98%的电场不互相干扰,可使用10W规则。
46、20H准则:
以一个H(电源和地之间的介质厚度)为单位,若内缩20H则可以将70%的电场限制在接地边沿内,内缩1000H则可以将98%的电场限制在内。
47、五五准则:
印制板层数选择规则,即时钟频率到5MHZ或脉冲上升时间小于5ns,则PCB板须采用多层板,如采用双层板,最好将印制板的一面做为一个完整的地平面
48、混合信号PCB分区准则:
1将PCB分区为独立的模拟部分和数字部分;
2将A/D转换器跨分区放置;
3不要对地进行分割,在电路板的模拟部分和数字部分下面设统一地;
4在电路板的所有层中,数字信号只能在电路板的数字部分布线,模拟信号只能在电路板的模拟部分布线;
5实现模拟电源和数字电源分割;
6布线不能跨越分割电源面之间的间隙;
7必须跨越分割电源之间间隙的信号线要位于紧邻大面积地的布线层上;
8分析返回地电流实际流过的路径和方式;
49、多层板是较好的板级EMC防护设计措施,推荐优选。
50、信号电路与电源电路各自独立的接地线,最后在一点公共接地,二者不宜有公用的接地线。
51、信号回流地线用独立的低阻抗接地回路,不可用底盘或结构架件作回路。
52、在中短波工作的设备与大地连接时,接地线<
1/4λ;
如无法达到要求,接地线也不能为1/4λ的奇数倍。
53、强信号与弱信号的地线要单独安排,分别与地网只有一点相连。
54、一般设备中至少要有三个分开的地线:
一条是低电平电路地线(称为信号地线),一条是继电器、电动机和高电平电路地线(称为干扰地线或噪声地线);
另一条是设备使用交流电源时,则电源的安全地线应和机壳地线相连,机壳与插箱之间绝缘,但两者在一点相同,最后将所有的地线汇集一点接地。
断电器电路在最大电流点单点接地。
f<
1MHz时,一点接地;
f>
10MHz时,多点接地;
1MHz
55、避免地环路准则:
电源线应靠近地线平行布线。
56、散热器要与单板内电源地或屏蔽地或保护地连接(优先连接屏蔽地或保护地),以降低辐射干扰
57、数字地与模拟地分开,地线加宽
58、对高速、中速和低速混用时,注意不同的布局区域
59、专用零伏线,电源线的走线宽度≥1mm
60、电源线和地线尽可能靠近,整块印刷板上的电源与地要呈“井”字形分布,以便使分布线电流达到均衡。
61、尽可能有使干扰源线路与受感应线路呈直角布线
62、按功率分类,不同分类的导线应分别捆扎,分开敷设的线束间距离应为50~75mm。
63、在要求高的场合要为内导体提供360°
的完整包裹,并用同轴接头来保证电场屏蔽的完整性
64、多层板:
电源层和地层要相邻。
高速信号应临近接地面,非关键信号则布放为靠近电源面。
65、电源:
当电路需要多个电源供给时,用接地分离每个电源。
66、过孔:
高速信号时,过孔产生1-4nH的电感和0.3-0.8pF的电容。
因此,高速通道的过孔要尽可能最小。
确保高速平行线的过孔数一致。
67、短截线:
避免在高频和敏感的信号线路使用短截线
68、星形信号排列:
避免用于高速和敏感信号线路
69、辐射型信号排列:
避免用于高速和敏感线路,保持信号路径宽度不变,经过电源面和地面的过孔不要太密集。
70、地线环路面积:
保持信号路径和它的地返回线紧靠在一起将有助于最小化地环
71、一般将时钟电路布置在PCB板接受中心位置或一个接地良好的位置,使时钟尽量靠近微处理器,并保持引线尽可能短,同时将石英晶体振荡只有外壳接地。
72、为进一步增强时钟电路的可靠性,可用地线找时钟区圈起隔离起来,在晶体振荡器下面加大接地的面积,避免布其他信号线;
73、元件布局的原则是将模拟电路部分与数字电路部分分工、将高速电路和低速电路分工,将大功率电路与小信号电路分工,、将噪声元件与非噪声元件分工,同时尽量缩短元件之间的引线,使相互间的干扰耦合达到最小。
74、电路板按功能进行分区,各分区电路地线相互并联,一点接地。
当电路板上有多个电路单元时,应使各单元有独立的地线回各,各单元集中一点与公共地相连,单面板和双面板用单点接电源和单点接地.
75、重要的信号线尽量短和粗,并在两侧加上保护地,信号需要引出时通过扁平电缆引出,并使用“地线—信号—地线”相间隔的形式。
76、I/O接口电路及功率驱动电路尽量靠近印刷板边缘
77、除时钟电路此,对噪声敏感的器件及电路下面也尽量避免走线。
78、当印刷电路板期有PCI、ISA等高速数据接口时,需注意在电路板上按信号频率渐进布局,即从插槽接口部位开始依次布高频电路、中等频率电路和低频电路,使易产生干扰的电路远离该数据接口。
79、信号在印刷线路上的引线越短越好,最长不宜超过25cm,而且过孔数目也应尽量少。
80、在信号线需要转折时,使用45度或圆弧折线布线,避免使用90度折线,以减小高频信号的反射。
81、布线时避免90度折线,减少高频噪声发射
82、注意晶振布线。
晶振与单片机引脚尽量靠近,用地线把时钟区隔离起来,晶振外壳接地并固定
83、电路板合理分区,如强、弱信号,数字、模拟信号。
尽可能把干扰源(如电机,继电器)与敏感元件(如单片机)远离
84、用地线把数字区与模拟区隔离,数字地与模拟地要分离,最后在一点接于电源地。
A/D、D/A芯片布线也以此为原则,厂家分配A/D、D/A芯片引脚排列时已考虑此要求
85、单片机和大功率器件的地线要单独接地,以减小相互干扰。
大功率器件尽可能放在电路板边缘
86、布线时尽量减少回路环的面积,以降低感应噪声
87、布线时,电源线和地线要尽量粗。
除减小压降外,更重要的是降低耦合噪声
88、IC器件尽量直接焊在电路板上,少用IC座
89、参考点一般应设置在左边和底边的边框线的交点(或延长线的交点)上或印制板的插件上的第一个焊盘。
90、布局推荐使用25mil网格
91、总的连线尽可能的短,关键信号线最短
92、同类型的元件应该在X或Y方向上一致。
同一类型的有极性分立元件也要力争在X或Y方向上一致,以便于生产和调试;
93、元件的放置要便于调试和维修,大元件边上不能放置小元件,需要调试的元件周围应有足够的空间。
发热元件应有足够的空间以利于散热。
热敏元件应远离发热元件。
94、双列直插元件相互的距离要>
2mm。
BGA与相临器件距离>
5mm。
阻容等贴片小元件相互距离>
0.7mm。
贴片元件焊盘外侧与相临插装元件焊盘外侧要>
压接元件周围5mm内不可以放置插装元器件。
焊接面周围5mm内不可以放置贴装元件。
95、集成电路的去耦电容应尽量靠近芯片的电源脚,高频最靠近为原则。
使之与电源和地之间形成回路最短。
96、旁路电容应均匀分布在集成电路周围。
97、元件布局时,使用同一种电源的元件应考虑尽量放在一起,以便于将来的电源分割。
98、用于阻抗匹配目的的阻容器件的放置,应根据其属性合理布局。
99、匹配电容电阻的布局要分清楚其用法,对于多负载的终端匹配一定要放在信号的最远端进行匹配。
100、匹配电阻布局时候要靠近该信号的驱动端,距离一般不超过500mil。
101、调整字符,所有字符不可以上盘,要保证装配以后还可以清晰看到字符信息,所有字符在X或Y方向上应一致。
字符、丝印大小要统一。
102、关键信号线优先:
电源、模拟小信号、高速信号、时钟信号和同步信号等关键信号优先布线;
103、环路最小规则:
即信号线与其回路构成的环面积要尽可能小,环面积要尽可能小,环面积越小,对外的辐射越少,接收外界的干扰也越小。
在双层板设计中,在为电源留下足够空间的情况下,应该将留下的部分用参考地填充,且增加一些必要的过孔,将双面信号有效连接起来,对一些关键信号尽量采用地线隔离,对一些频率较高的设计,需特别考虑其他平面信号回路问题,建议采用多层板为宜。
104、接地引线最短准则:
尽量缩短并加粗接地引线(尤其高频电路)。
对于在不同电平上工作的电路,不可用长的公共接地线。
105、内部电路如果要与金属外壳相连时,要用单点接地,防止放电电流流过内部电路
106、对电磁干扰敏感的部件需加屏蔽,使之与能产生电磁干扰的部件或线路相隔离。
如果这种线路必须从部件旁经过时,应使用它们成90°
交角。
107、布线层应安排与整块金属平面相邻。
这样的安排是为了产生通量对消作用
108、在接地点之间构成许多回路,这些回路的直径(或接地点间距)应小于最高频率波长的1/20
109、单面或双面板的电源线和地线应尽可能靠近,最好的方法是电源线布在印制板的一面,而地线布在印制板的另一面,上下重合,这会使电源的阻抗为最低
110、信号走线(特别是高频信号)要尽量短
111、两导体之间的距离要符合电气安全设计规范的规定,电压差不得超过它们之间空气和绝缘介质的击穿电压,否则会产生电弧。
在0.7ns到10ns的时间里,电弧电流会达到几十A,有时甚至会超过100安培。
电弧将一直维持直到两个导体接触短路或者电流低到不能维持电弧为止。
可能产生尖峰电弧的实例有手或金属物体,设计时注意识别。
112、紧靠双面板的位置处增加一个地平面,在最短间距处将该地平面连接到电路上的接地点。
113、确保每个电缆进入点离机箱地的距离在40mm(1.6英寸)以内。
114、将连接器外壳和金属开关外壳都连接到机箱地上。
115、在薄膜键盘周围放置宽的导电保护环,将环的外围连接到金属机箱上,或至少在四个拐角处连接到金属机箱上。
不要将该保护环与PCB地连接在一起。
116、使用多层PCB:
相对于双面PCB而言,地平面和电源平面以及排列紧密的信号线-地线间距能够减小共模阻抗(commonimpedance)和感性耦合,使之达到双面PCB的1/10到1/100。
尽量地将每一个信号层都紧靠一个电源层或地线层。
117、对于顶层和底层表面都有元器件、具有很短连接线以及许多填充地的高密度PCB,可使用内层线。
大多数的信号线以及电源和地平面都在内层上,因而类似于具备屏蔽功能的法拉第盒。
118、尽可能将所有连接器都放在电路板一侧。
119、在引向机箱外的连接器(容易直接被ESD击中)下方的所有PCB层上,放置宽的机箱地或者多边形填充地,并每隔大约13mm的距离用过孔将它们连接在一起。
120、PCB装配时,不要在顶层或者底层的安装孔焊盘上涂覆任何焊料。
使用具有内嵌垫圈的螺钉来实现PCB与金属机箱/屏蔽层或接地面上支架的紧密接触。
121、在每一层的机箱地和电路地之间,要设置相同的“隔离区”;
如果可能,保持间隔距离为0.64mm(0.025英寸)。
122、电路周围设置一个环形地防范ESD干扰:
1在电路板整个四周放上环形地通路;
2所有层的环形地宽度>
2.5mm(0.1英寸);
3每隔13mm(0.5英寸)用过孔将环形地连接起来;
4将环形地与多层电路的公共地连接到一起;
5对安装在金属机箱或者屏蔽装置里的双面板来说,应该将环形地与电路公共地连接起来;
6不屏蔽的双面电路则将环形地连接到机箱地,环形地上不涂阻焊剂,以便该环形地可以充当ESD的放电棒,在环形地(所有层)上的某个位置处至少放置一个0.5mm宽(0.020英寸)的间隙,避免形成大的地环路;
7如果电路板不会放入金属机箱或者屏蔽装置中,在电路板的顶层和底层机箱地线上不能涂阻焊剂,这样它们可以作为ESD电弧的放电棒。
123、在能被ESD直接击中的区域,每一个信号线附近都要布一条地线。
124、易受ESD影响的电路,放在PCB中间的区域,减少被触摸的可能性。
125、信号线的长度大于300mm(12英寸)时,一定要平行布一条地线。
126、安装孔的连接准则:
可以与电路公共地连接,或者与之隔离。
1金属支架必须和金属屏蔽装置或者机箱一起使用时,要采用一个0Ω电阻实现连接。
2.确定安装孔大小来实现金属或者塑料支架的可靠安装,在安装孔顶层和底层上要采用大焊盘,底层焊盘上不能采用阻焊剂,并确保底层焊盘不采用波峰焊工艺焊接。
127、受保护的信号线和不受保护的信号线禁止并行排列。
128、复位、中断和控制信号线的布线准则:
1采用高频滤波;
2远离输入和输出电路;
3远离电路板边缘。
129、机箱内的电路板不安装在开口位置或者内部接缝处。
130、对静电最敏感的电路板放在最中间,人工不易接触到的部位;
将对静电敏感的器件放在电路板最中间,人工不易接触到的部位。
131、两块金属块之间的邦定(binding)准则:
1固体邦定带优于编织邦定带;
2邦定处不潮湿不积水;
3使用多个导体将机箱内所有电路板的地平面或地网格连接在一起;
4确保邦定点和垫圈的宽度大于5mm。