液压辅助元件Word格式文档下载.docx

上传人:b****5 文档编号:19353777 上传时间:2023-01-05 格式:DOCX 页数:15 大小:33.14KB
下载 相关 举报
液压辅助元件Word格式文档下载.docx_第1页
第1页 / 共15页
液压辅助元件Word格式文档下载.docx_第2页
第2页 / 共15页
液压辅助元件Word格式文档下载.docx_第3页
第3页 / 共15页
液压辅助元件Word格式文档下载.docx_第4页
第4页 / 共15页
液压辅助元件Word格式文档下载.docx_第5页
第5页 / 共15页
点击查看更多>>
下载资源
资源描述

液压辅助元件Word格式文档下载.docx

《液压辅助元件Word格式文档下载.docx》由会员分享,可在线阅读,更多相关《液压辅助元件Word格式文档下载.docx(15页珍藏版)》请在冰豆网上搜索。

液压辅助元件Word格式文档下载.docx

过滤精度mm

100

25~50

25

10

5

(2)通流能力滤油器的通流能力一般用额定流量表示,它与滤油器滤芯的过滤面积成正比。

(3)压力损失指滤油器在额定流量下的进出油口间的压差。

一般滤油器的通流能力越好,压力损失也越小。

(4)其他性能滤油器的其它性能主要指:

滤芯强度、滤芯寿命、滤芯耐腐蚀性等定性指标。

不同滤油器这些性能会有较大的差异,可以通过比较确定各自的优劣。

3.滤油器的典型结构

按过滤机理,滤油器可分为机械滤油器和磁性滤油器两类。

前者是使液压油通过滤芯的孔隙时将污物的颗粒阻挡在滤芯的一侧;

后者用磁性滤芯将所通过的液压油内铁磁颗粒吸附在滤芯上。

在一般液压系统中常用机械滤油器,在要求较高的系统可将上述两类滤油器联合使用。

在此着重介绍机械滤油器。

(1)网式滤油器图6-1为网式滤油器结构图。

它是由上端盖1、下端盖4之间连接开有若干孔的筒形塑料骨架(或金属骨架)组成,在骨架外包裹一层或几层过滤网2。

滤油器工作时,液压油从滤油器外通过过滤网进入滤油器内部,再从上盖管口处进入系统。

此滤油器属于粗滤油器,其过滤精度为0.13~0.04mm,压力损失不超过0.025MPa,这种过滤器的过滤精度与铜丝网的网孔大小,铜网的层数有关。

网式滤油器的特点为:

结构简单,通油能力强,压力损失小,清洗方便,但是过滤精度低。

一般安装在液压泵的吸有管口上用以保护液压泵。

 

图6-1网式滤油器

1-上端盖2-过滤网3-骨架4–下端盖

(2)线隙式滤油器图6-2为线隙式滤油器结构图,它是由端盖1、壳体2、带孔眼的筒形骨架,和绕在骨架3外部的金属绕线组成。

工作时,油液从孔a进入滤油器内,经线间的间隙、骨架上的孔眼进入滤芯中再由孔b流出。

这种滤油器利用金属绕线间的间隙过滤,其过滤精度取决于间隙的大小。

过滤精度有30mm、50mm、和80mm三种精度等级,其额定流量为6~25L/min,在额定流量下,压力损失为0.03~0.06MPa。

线隙式滤油器分为吸油管用和压油管用两种。

前者安装在液压泵的吸油管道上其过滤精度为0.05~0.1mm,通过额定流量时压力损失小于0.02MPa;

后者用于液压系统的压力管道上,过滤精度为0.03~0.08mm,压力损失小于0.06MPa。

这种滤油器的特点是:

结构简单,通油性能好,过滤精度较高,所以应用较普遍。

缺点是不易清洗,滤芯强度低。

多用于中、低压系统。

图6-2线隙式滤油器

1-端盖2-壳体3-骨架4-金属绕线

(3)纸芯式滤油器纸芯式滤油器以滤纸(机油微口滤纸)为过滤材料,把厚度为0.35~0.7的平纹或波纹的酚醛树脂或木浆的微孔滤纸,环绕在带孔的镀锡铁皮骨架上,制成滤纸芯(如图6-3所示)。

油液从滤芯外面经滤纸进入滤芯内,然后从孔道a流出。

为了增加滤纸1的过滤面积,纸芯一般都做成折叠式。

这种滤油器过滤精度有0.01mm和0.02mm两种规格,压力损失为0.01~0.04MPa,其特点为过滤精度高,缺点是堵塞后无法清洗,需定期更换纸芯,强度低,一般用于精过滤系统。

图6-3纸芯式滤油器

1-滤纸2-骨架

(4)烧结式滤油器图6-4为烧结式滤油器结构图。

此滤油器是由端盖1、壳体2、滤芯3组成,其滤芯是由颗粒状铜粉烧结而成。

其过滤过程是:

压力油从a孔进入,经铜颗粒之间的微孔进入滤芯内部,从b孔流出。

烧结式滤油器的过滤精度与滤芯上铜颗粒之间的微孔的尺寸有关,选择不同颗粒的粉末,制成厚度不同的滤芯就可获得不同的过滤精度。

烧结式滤油器的过滤精度为0.01~0.001mm之间,压力损失为0.03~0.2MPa。

这种滤油器的特点是强度大,可制成各种形状,制造简单,过滤精度高。

缺点是难清洗,金属颗粒易脱落。

用于需要精过滤的场合。

图6-4烧结式滤油器

1-端盖2-壳体3-滤芯

4.滤油器的选用

选择滤油器时,主要根据液压系统的技术要求,及滤油器的特点综合考虑来选择。

主要考虑的因素有:

(1)系统的工作压力系统的工作压力是选择滤油器精度的主要依据之一。

系统的压力越高,液压元件的配合精度越高,所需要的过滤精度也就越高。

(2)系统的流量过滤器的通流能力是根据系统的最大流量而确定的,一般,过滤器的额定流量不能小于系统的流量。

否则滤油器的压力损失会增加,滤油器易堵塞,寿命也缩短。

但滤油器的额定流量越大,其体积造价和也越大,因此应选择合适的流量。

(3)滤芯的强度滤油器滤芯的强度是一重要指标。

不同结构的滤油器有不同的强度。

在高压或冲击大的液压回路应选用强度高的滤油器。

5.滤油器的安装

滤油器的安装是根据系统的需要而确定的,一般可安装在图6-5所示的各种位置上:

图6-5滤油器的安装

(1)安装在液压泵的吸油口如图6-5a)所示,在泵的吸油口安装滤油器,可以保护系统中的所有元件,但由于受泵吸油阻力的限制,只能选用压力损失小的网式滤油器。

这种滤油器过滤精度低,泵磨损所产生的颗粒将进入系统,对系统其他液压元件无法完全保护,还需其它滤油器串在油路上使用。

(2)安装在液压泵的出油口上如图6-5b)所示,这种安装方式可以有效的保护除泵以外的其它液压元件,但由于滤油器是在高压下工作,滤芯需要有较高的强度,为了防止滤油器堵塞而引起液压泵过载或滤油器损坏,常在滤油器旁设置一堵塞指示器或旁路阀加以保护。

(3)安装在回油路上如图6-5c)所示将滤油器安装在系统的回油路上。

这种方式可以把系统内油箱或管壁氧化层的脱落或液压元件磨损所产生的颗粒过滤掉,以保证油箱内液压油的清洁使泵及其它元件受到保护。

由于回油压力较低,所需滤油器强度不必过高。

(4)安装在支路上这种方式如图6-5d)所示,主要安装在溢流阀的回油路上,这时不会增加主油路的压力损失,滤油器的流量也可小于泵的流量,比较经济合理。

但不能过滤全部油液,也不能保证杂质不进入系统。

(5)单独过滤如图6-5e)所示,用一个液压泵和滤油器单独组成一个独立与系统之外的过滤回路,这样可以连续清除系统内的杂质,保证系统内清结。

一般用于大型液压系统。

第二节蓄能器

蓄能器是在液压系统中储存和释放压力能的元件。

它还可以用作短时供油和吸收系统的振动和冲击的液压元件。

一、蓄能器的类型和结构

蓄能器主要有重锤式、充气式和弹簧式三种类型。

1.重锤式蓄能器

重锤式蓄能器的结构原理图如图6-6所示,它是利用重物的位置变化来储存和释放能量的,重锤1通过活塞2作用于液压油3上,使之产生压力。

当储存能量时,油液从孔a经单向阀进入蓄能器内,通过柱塞推动重物上升;

释放能量时,柱塞同重物一起下降,油液从b孔输出。

这种蓄能器结构简单、压力稳定、但容量小、体积大、反应不灵活、易产生泄漏。

目前只用于少数大型固定设备的液压系统。

图6-6重锤式蓄能器

1-重物2-柱塞3-液压油

2.弹簧式蓄能器

图6-7为弹簧式蓄能器的结构原理图,它是利用弹簧的伸缩来储存和释放能量的。

弹簧1的力通过活塞2作用于液压油3上。

液压油的压力取决于弹簧的预紧力和活塞的面积。

由于弹簧伸缩时弹簧力会发生变化,所形成的油压也会发生变化。

为减少这种变化,一般弹簧的刚度不可太大,弹簧的行程也不能过大,从而限定了这种蓄能器的工作压力。

这种蓄能器用于低压、小容量的系统,常用于液压系统的缓冲。

弹簧式蓄能器具有结构简单、反应较灵敏等特点,但容量较小、承压较低。

图6-7弹簧式蓄能器

1弹簧2-活塞3-液压油

3.充气式蓄能器

充气式蓄能器是利用其体的压缩和膨胀来储存和释放能量。

为安全,所充气体一般为惰性气体或氮气。

常用的充气式蓄能器有活塞式和气囊式两种,如图6-8所示。

(1)活塞式蓄能器图6-8a)为活塞式蓄能器结构图,压力油从a口进入,推动活塞,压缩活塞上腔的气体而储存能量;

当系统压力低于蓄能器内压力时,气体推动活塞,释放压力油,满足系统需要。

这种蓄能器具有结构简单,工作可靠,维修方便等特点,但由于缸体的加工精度较高,活塞密封易磨损,活塞的惯性及摩擦力的影响,使之存在造价高、易泄漏、反应灵敏程度差等缺陷。

(2)气囊式蓄能器图6-8b)为气囊式蓄能器结构图,由图可知,气囊2安装在壳体3内,充气阀1为气囊充入氮气,压力油从入口顶开菌形限位阀4进入蓄能器压缩气囊,气囊内的气体被压缩而储存能量;

当系统压力低于蓄能器压力时,气囊膨胀压力油输出,蓄能器释放能量。

菌形限位阀的作用是防止气囊膨胀时从蓄能器油口处凸出而损坏。

这种蓄能器的特点是气体与油液完全隔开,气囊惯性小、反应灵活、结构尺寸小、重量轻、安装方便。

是目前应用最为广泛的蓄能器之一。

图6-8充气式蓄能器

a)活塞式蓄能器b)气囊式蓄能器

1-充气阀2-气囊3-壳体4-限位阀

二、蓄能器的容量计算

蓄能器的容量是选用蓄能器的主要指标之一。

不同的蓄能器其容量的计算方法不同,在此仅对应用最为广泛的气囊式蓄能器,用作辅助能源时容量的计算方法作一简要的介绍。

图6-9气囊式蓄能器的工作状态

气囊式蓄能器在工作前要先充气,当充气后气囊会占据蓄能器壳体的全部体积,假设此时气囊内的体积为v0,压力为p0;

在工作状态下,压力油进入蓄能器,使气囊受到压缩,此时气囊内气体的体积为V1,压力为p1;

压力油释放后,气囊膨胀其体积变为V2,压力降为p2,如图6-9所示。

根据波义尔气体定律可知

p0V0n=p1V1n=p2V2n=const(6-1)

式中p0V0——蓄能器没有压力油输入时,气囊内预充气体的压力和体积;

p1V1——蓄能器在工作状态下气囊压缩后其内腔的压力和体积;

p2V2——蓄能器在释放能量后气囊内压力和体积;

n——由蓄能器工作状态所确定的指数:

当蓄能器释放能量的速度为缓慢的时,如用来保压或补偿泄漏,可以认为气体是在等温条件下工作,取n=1;

当蓄能器迅速释放能量时,如用来大量供油时,可以认为是在绝热条件下工作,取n=1.4。

设蓄能器储存油液的最大容积为VW,则有

VW=V2-V1/(6-2)

将式(6-2)与(6-1)联立,可得

V0=VW(p2/p0)1/n/[1-(p2/p1)1/n](6-3)

或VW=V0p01/n[(1/p2)1/n-(1/p1)1/n](6-4)

理论上,充气压力p0与释放能量后的压力p2应当相等,但由于系统中有泄漏,为了保证系统压力为p2时蓄能器还能向系统供油,应使p0<

p2.。

对于折合型气囊,取p0=(0.8~0.85)p2;

对于波纹型气囊,取p0=(0.6~0.65)p2。

p1和p2为系统的最高工作压力和维持系统工作的最低工作压力,他们均由系统的要求确定;

V0为气囊的最大容积,也可认为是蓄能器的容积,在确定V0时,应先由式6-3计算出V0,再查手册选取蓄能器容积标准值。

例6-1在一个最高和最低工作压力分别为p1=20MPa、p2=10MPa的液压系统中,若蓄能器的充气压力为p0=9MPa,求满足输出5L液体的蓄能器的容量。

解若蓄能器慢速输油时,n=1,由式(6-3)有

V0=5(10/9)/[1-(10/20)]=11.11

蓄能器快速输油时,n=1.4,由式(6-3)有

V0=5(10/9)1/1.4/[1-(10/20)1/1.4]=13.81

三、蓄能器的安装使用

蓄能器在液压系统中安装的位置,由蓄能器的功能来确定。

在使用和安装蓄能器时应注意以下问题:

1.气囊式蓄能器应当垂直安装,倾斜安装或水平安装会使蓄能器的气囊与壳体磨损,影响蓄能器的使用寿命。

2.吸收压力脉动或冲击的蓄能器应该安装在振源附近。

3.安装在管路中的蓄能器必须用支架或挡板固定,以承受因蓄能器蓄能或释放能量时所产生的动量反作用力。

4.蓄能器与管道之间应安装止回阀,以用于充气或检修。

蓄能器与液压泵间应安装单向阀,以防止停泵时压力油倒流。

第三节油箱

油箱的主要功用是储存油液,同时箱体还具有散热、沉淀污物、析出油液中渗入的空气以及作为安装平台等作用。

一、油箱的分类及典型结构

1.油箱的结构

油箱可分为开式结构和闭式结构两种,开式结构油箱中的油液具有与大气相同的自由液面,多用于各种固定设备;

闭式结构的油箱中的油液与大气是隔绝的,多用于行走设备及车辆。

开式结构的油箱又分为整体式和分离式。

整体式油箱是利用主机的底座作为油箱。

其特点是结构紧凑、液压元件的泄漏容易回收,但散热性能差,维修不方便,对主机的精度及性能有所影响。

分离式油箱单独成立一个供油泵站,与主机分离,其散热性、维护和维修性均好与整体式油箱,但须增加占地面积。

目前精密设备多采用分离式油箱。

2.油箱的典型结构

图6-10为开式结构分离式油箱的结构简图。

箱体10一般用2.5~4mm左右的薄钢板焊接而成,表面涂有耐油涂料;

油箱中间有两个隔板7和9,用来将液压泵的吸油管1与回油管4分离开,以阻挡沉淀杂物及回油管产生的泡沫;

油箱顶部的安装板5用较厚的钢板制造,用以安装电动机、液压泵、集成块等部件。

在安装板上装有滤油网2防尘盖3用以注油时过滤,并防止异物落入油箱。

防尘盖侧面开有小孔与大气相通;

油箱侧面装有液位计12用以显示油量;

油箱底部装有排油阀8用以换油时排油和排污。

图6-10油箱简图

1-吸油管注油器2-滤油网3-防尘盖泄油管4-回油管5-安装板6-液位计7-下隔板8-排油阀9-上隔板10-箱体

二、油箱的设计

油箱属于非标准件,在实际情况下常根据需要自行设计。

油箱设计时主要考虑油箱的容积、结构、散热等问题。

限于篇幅,在此仅将设计思路简介如下。

1.油箱容积的估算

油箱的容积是油箱设计时需要确定的主要参数。

油箱体积大时散热效果好,但用油多,成本高;

油箱体积小时,占用空间少,成本降低,但散热条件不足。

在实际设计时,可用经验公式初步确定油箱的容积,然后再验算油箱的散热量Q1,计算系统的发热量Q2,当油箱的散热量大于液压系统的发热量时(Q1>

Q2),油箱容积合适;

否则需增大油箱的容积或采取冷却措施(油箱散热量及液压系统发热量计算请查阅有关手册)。

油箱容积的估算经验公式为

V=αq(6-4)

式中V—油箱的容积(L)

q—液压泵的总额定流量(L/min)

α--经验系数(min),其数值确定如下:

低压系统:

α=2—4min

中压系统:

α=5—7min

中、高压或高压大功率系统:

α=6—12min

2.设计时的注意事项

在确定容积后,油箱的结构设计就成为实现油箱各项功能的主要工作。

设计油箱结构时应注意以下几点:

1)箱体要有足够的强度和刚度。

油箱一般用2.5~4mm的钢板焊接而成,尺寸大者要加焊加强筋。

2)泵的吸油管上应安装100~200目的网式滤油器,滤油器与箱底间的距离不应小于20mm,滤油器不允许露出油面,防止泵卷吸空气产生噪声。

系统的回油管要插入油面以下,防止回油冲溅产生气泡。

3)吸油管与回油管应隔开,二者间的距离尽量远些,应当用几块隔板隔开,以增加油液的循环距离,使油液中的污物和气泡充分沉淀或析出。

隔板高度一般取油面高度的3/4。

4)防污密封。

为防止油液污染,盖板及窗口各连接处均需加密封垫,各油管通过的孔都要加密封圈,

5)油箱底部应有坡度,箱底与地面间应有一定距离,箱底最低处要设置放油塞。

6)油箱内壁表面要做专门处理。

为防止油箱内壁涂层脱落,新油箱内壁要经喷丸、酸洗和表面清洗,然后可涂一层与工作液相容的塑料薄膜或耐油清漆。

第四节热交换器

液压系统在工作时液压油的温度应保持在15~65C˚之间,油温过高将使油液迅速变质,同时油液的粘度下降,系统的效率降低;

油温过低则油液的流动性变差,系统压力损失加大,泵的自吸能力降低。

因此,保持油温的数值是液压系统正常工作的必要条件。

因受车辆负荷等因素的限制,有时靠油箱本身的自然调节无法满足油温的需要,需要借助外界设施满足设备油温的要求。

热交换器就是最常用的温控设施。

热交换器分冷却器和加热器两类。

一、冷却器

冷却器按冷却形式可分为水冷、风冷和氨冷等多种形式,其中水冷和风冷是常用的冷却形式。

图6-11a)为常用的蛇形管式水冷却器,将蛇形管安装在油箱内,冷却水从管内流过,带走油液内产生的热量。

这种冷却器结构简单,成本低,但热交换效率低,水耗大。

图6-11b)为大型设备常用的壳管式冷却器,它是由壳体1铜管3及隔板2组成。

液压油从壳体1的左油口进入,经多条冷却铜管3外壁及隔板冷却后,从壳体右口流出。

冷却水在壳体右隔箱4上部进水口流入,再上部铜管3内腔到达壳体左封堵,然后再经下部铜管3内腔通道,由壳体右隔箱4下部出水口流出。

由于多条冷却铜管及隔墙的作用,这种冷却器热交换效率高,但体积大,造价高。

图6-11冷却器

a)蛇形管式b)壳管式

1-壳体2-隔板3-铜管4-壳体隔箱

近年来出现了翅片式冷却器,即将冷却管外套有多个具有良好导热材料制成的散热翅片,以增加散热面积。

风冷式散热器在行走车辆的液压设备上应用较多,风冷式冷却器可以是排管式,也可以用翅片式(单层管壁),其体积小,但散热效率不及水冷式高。

冷却器一般安装在液压系统的回油路上或在溢流阀的溢流管路上。

图6-12为冷却器的安装位置的例子。

液压泵输出的压力油直接进入系统,已发热的回油和溢流阀溢出的油一起经冷却器1冷却后回到油箱。

单向阀2用以保护冷却器,截止阀3是当不需要冷却器时打开,提供通道。

图6-12冷却器的安装位置

二、加热器

液压系统中所使用的加热器一般采用电加热方式。

电加热器结构简单,控制方便,可以设定所需温度,温控误差较小。

但电加热器的加热管直接与液压油接触,易造成箱体内油温不均匀,有时加速油质裂化,因此,可设置多个加热器,且控制加热器不宜过高。

图6-13为加热器的应用。

加热器2安装在油箱的箱体壁上,用法兰连接。

图6-13加热器的安装

1-油箱2-加热器

第五节管件

将分散的液压元件用油管和管接头连接,构成一个完整的液压系统。

油管的性能、管接头的结构对液压系统的工作状态有直接的关系。

在此介绍常用的液压油管及管接头的结构,供设计液压装置选用连接件时参考。

一、油管

1.油管的种类

在液压系统中,所使用的油管种类较多,有钢管、铜管、尼龙管、塑料管、橡胶管等,在选用时要根据液压系统压力的高低,液压元件安装的位置,液压设备工作的环境等因素。

(1)钢管分为无缝钢管和焊接钢管两类。

前者一般用于高压系统,后者用于中低压系统。

钢管的特点是:

承压能力强,价格低廉,强度高、刚度好,但装配和弯曲较困难。

目前在各种液压设备中,钢管应用最为广泛。

(2)铜管铜管分为黄铜管和紫铜管两类,多用紫铜管。

铜管局有装配方便、易弯曲等优点,但也有强度低,抗震能力差、材料价格高、易使液压油氧化等缺点,一般用于液压装置内部难装配的地方或压力在0.5—10MPa的中低压系统。

(3)尼龙管这是一种乳白色半透明的新型管材,承压能力有2.5和8MPa两种。

尼龙管具有价格低廉,弯曲方便,等特点,但寿命较短。

多用于低压系统替代铜管使用。

(4)塑料管塑料管价格低,安装方便,但承压能力低,易老化,目前只用于泄漏管和

回油路使用。

(5)橡胶管这种油管有高压和低压两种,高压管由夹有钢丝编织层的耐油橡胶制成,钢丝层越多,油管耐压能力越高。

低压管的编织层为帆布或棉线。

橡胶管用于具有相对运动的液压件的连接。

2.油管的计算

油管的计算主要是确定油管内径和管壁的厚度。

油管内径计算式为

(6-5)

式中q—通过油管的流量

v—油管中推荐的流速,吸油管取0.5~1.5m/s;

压油管取2.5~5m/s;

回油管取1.5~2.5m/s。

油管壁厚可用计算式为

(6-6)

式中p—油管内压力;

[σ]—油管材料的许用应力。

[σ]=σb/n,式中,σb为油管材料的抗拉强度,n为安全系数。

对于钢管,当p<

7MPa时,取n=8;

当p<

17.5MPa时,取n=6;

当p>

17.5时,n=4。

二、管接头

管接头是连接油管与液压元件或阀板的可拆卸的连接件。

管接头应满足于拆装方便、密封性好,连接牢固、外形尺寸小、压降小、工艺性好等要求。

常用的管接头种类很多,按接头的通路分:

有直通式、角通式、三通和四通式;

按接头与阀体或阀板的连接方式分:

螺纹式、法兰式等;

按油管与接头的连接方式分:

有扩口式、焊接式、卡套式、扣压式、快换式等。

以下仅对后一种分类作一介绍。

1.扩口式管接头

图6-14a)所示为扩口式管接头,它是利用油管1管端的扩口在管套的压紧下进行密封。

这种管接头结构简单,适用于铜管、薄壁钢管、尼龙管和塑料管的连接。

2.焊接管接头

图6-14b)所示为焊接管接头,油管与接头内芯1焊接而成,街头内心的球面与接头体锥孔面紧密相连,具有密封性好、结构简单、耐压性强高等优点。

缺点是焊接较麻烦,适用于高压厚壁钢管的连接。

3.卡套式管接头

图6-14c)为卡套式管接头,它是利用弹性极好的卡套2卡住油管1而密封。

其特点是结构简单、安装方便,油管外壁尺寸精度要求较高。

卡套式管接头适用于高压冷拔无缝钢管连接。

4.扣压式管接头

图6-14d)所示为扣压式管接头,这种管接头是由接头外套1和街头芯子2组成。

此接头适用于软管连接

5.可拆卸式管接头

图6-14e)为可拆卸式管接头。

此接头的结构是在外套1和接头芯子2上作成六角形,便于经常拆卸软管。

适用于高压小直径软管连接。

6.快换接头

图6-14f)为快换接头,此接头便于快速拆装油管。

其原理为:

当卡箍6向左移动时,钢珠5从插嘴4的环槽中向外退出,插嘴不再被卡住,可以迅速从插座1中抽出。

此时管塞2和3在各自的弹簧力作用下将两个管口关闭,使油管内的油液不会流失。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 工程科技 > 环境科学食品科学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1