光隔离器实验Word格式.docx

上传人:b****5 文档编号:19224570 上传时间:2023-01-04 格式:DOCX 页数:15 大小:572.54KB
下载 相关 举报
光隔离器实验Word格式.docx_第1页
第1页 / 共15页
光隔离器实验Word格式.docx_第2页
第2页 / 共15页
光隔离器实验Word格式.docx_第3页
第3页 / 共15页
光隔离器实验Word格式.docx_第4页
第4页 / 共15页
光隔离器实验Word格式.docx_第5页
第5页 / 共15页
点击查看更多>>
下载资源
资源描述

光隔离器实验Word格式.docx

《光隔离器实验Word格式.docx》由会员分享,可在线阅读,更多相关《光隔离器实验Word格式.docx(15页珍藏版)》请在冰豆网上搜索。

光隔离器实验Word格式.docx

旋转角θ的大小受磁光材料的旋磁特性、长度、工作波长及磁场强度的影响。

材料介质越长、磁场强度越强、工作波长越短,旋转角度将越大。

不同介质,振动面的旋转方向不同。

顺着磁场方向看,使振动面向右旋的,称为右旋或正旋介质,V为正值。

反之,则称为左旋或负旋介质,V为负值。

对于给定的磁光介质,振动面的旋转方向只决定于磁场方向,与光线的传播方向无关。

这点是磁光介质和天然旋光介质之间的重要区别。

就是说,天然旋光性物质,它的振动面旋转方向不只是与磁场方向有关,而且还与光的传播方向有关。

例如,光线两次通过天然性的旋光物质,一次是沿着某个方向,另一次是与这个方向相反,观察结果,振动面并没旋转。

可是磁光物质则不同,光线以相反的两个方向两次通过磁光物质时,其振动面的旋转角是叠加的。

因此,在磁致旋光的情况下,使光线多次通过磁光

物质可得到旋转角累加。

 

图21.1、磁光介质旋转角的累加效应

在强磁场中放一块磁光物质ab,ab呈平行六面体状。

其相对的两表面除留有一个很窄的缝隙外皆涂以银(图21.1中的斜线)。

光线从狭缝进入磁光介质,然后经过在镀银表面上的多次反射,从另一个狭缝射出。

这时,出射的偏振光振动面的旋转角,将与光线在介质中多次反射的总光程成正比例。

2.光隔离器的工作原理

图21.2隔离器工作原理

(1)入射光透过偏振镜之后,只让偏振角为90度(y轴)方向的光通过,在经一順时针方向旋转45度的法拉第回旋器(45°

FaradayRotator)將原本偏振角为90度順时针调整成为45度输出,如图21.2(a)、图21.2(b)。

(2)入射光经调整后为90度,而输出的光偏振角則为45度,如图21.2(c)。

(3)此時如果有一反射光循原路径返回经过输出端偏振镜后,只让偏振角为45度角的光通过,经过法拉第回旋器,將反射回來的光偏振角再调整成0度(x轴)到了输入端的偏振镜時,原本输入端的偏振镜角度为90度,会將偏振角度为0度的反射光滤除。

這時输入端便不会有自系統反射回來的光了,如图21.2(d)。

或者见示意图(图21.3和图21.4所示)

正向传输时,光可顺利通过第二个偏振器(导通):

反向传输时,光偏振面再转45度,与第二个偏振器成90度,光被隔离:

3.偏振无关隔离器

其光学结构如图21.5所示

Wedge是楔形双折射晶体,作为偏振器使用,两个偏振器成45度。

法拉第旋转器放置在中间。

4.光纤准直器

光纤准直器是光纤通信系统和光纤传感系统中的基本光学元件,它是由光纤和长度为0.25节距的具有合适镀层的自聚焦透镜组成,如图21.6所示。

图21.6光纤准直器

自聚焦透镜的焦距为:

(21.2)

其中,z为自聚焦透镜的长度。

由此可见,因为A是波长的函数,所以f也是波长的函数,在给定的波长条件下如果z过长,则焦点在透镜的端面内;

反之,z过短,则焦点在透镜端面外。

因此,透镜长度的误差必然会影响光耦合的效果,这是造成准直器损耗的主要原因之一。

光纤和自聚焦透镜之间的耦合原理同普通透镜的耦合原理相似,所以用自聚焦透镜的长度为:

(21.3)

式中,P为自聚焦透镜的节距。

因为自聚焦透镜的四分之一节距P是在近轴近似的条件下,子午光线遵循正弦路径传播而确定的。

同时,GRIN的折射率分布在离轴心0.8mm半径处有一拐点。

所以,由(21.1)式算出的z值还不够精确,带来了耦合时的损耗;

另外,GRIN的像差也会使光束的耦合效率下降,增加了器件的损耗。

光准直器的用途是对高斯光束进行准直,两个光准直器放在图21.5所示光学结构的两端,以提高光纤与光纤间的耦合效率。

基本技术参数

1.插入损耗(InsertLoss)

在光路中增加了光隔离器而产生的额外损耗,称为插入损耗,定义隔离器输入和输出端口之间的光功率之比(dB),

(21.4)

其中Pin为发送进输入端口的光功率,Pout为从输出端口接收到的功率。

2.隔离度

它是指光隔离器反方向的传输损耗,所以,也称作反向隔离度:

(21.5)

所以,光隔离器的插入损耗与隔离度的测量方法是一样的,只是一个测量正向、另一个测量反向。

3.回波损耗

器件的回波损耗是指入射到器件中的光能量和沿入射光路反射回的光能量之比。

回波损耗由各元件和空气折射率失配造成的反射引起,主要包括晶体元件和光准直器引起的回波损耗。

回波损耗的测试原理如下图:

这是CCITT和国家标准中建议的方法。

测试时,选择一个插入损耗小,分光比为1:

1带连接器端口的定向耦合器进行测试。

先将耦合器的第三端口用匹配剂匹配起来,用光功率计测得耦合器第二端的光功率P0,再将待测器件接上,并在待测器件的尾端涂好匹配液,测得耦合器第三端的回返光功率Pr,即得到待测器件的回波损耗:

(21.6)

其中,T23为定向耦合器的传输系数,对于1:

1均匀分光定向耦合器,其值一般设为0.5。

三、实验用具与装置图:

实验用具:

稳定光源、光功率计(武邮)、单模标准跳线(用于测量器件的输入功率)、

光隔离器(OISS1310ASO1111)

实验装置示意图如下所示:

实验步骤需要同学自行拟定。

四、实验步骤和数据记录

1、测量跳线的输出光功率。

(1)用镜头纸擦拭跳线两端的光纤界面,避免尘土影响光波入射。

(2)跳线的一段连接稳定化光源,另一端连接光功率计。

(3)调节稳定化光源,使其稳定输出1310nm和1550nm光波。

(4)选择光功率计的1310nm和1550nm档,待其稳定后读数,记录数据。

(5)以上操作需在下面每个实验参数测量前重复进行一次。

2、测量光隔离器1310nm和1550nm的插入损耗I.L

(1)用镜头纸擦拭光隔离器的光纤的每端界面。

(2)把光隔离器正、反向分别接入1310nm稳定化光源和光功率计。

(3)接入后即开始读数,记录数据。

(4)隔几分钟读数一次,重复四次,共记录5个数据。

(5)换上1550nm稳定化光源,重复上述步骤。

1.测得标准跳线当的光功率

为:

1310nm:

76.5μW,-11.15dBm

1550nm:

409μW,-3.89dBm

2

(1).对于1310nm光源,隔离器输出端功率

1

2

3

4

5

(μW)

47.3

47.4

47.5

47.44

(dBm)

-13.24

-13.23

-13.243

插入损耗为:

I.L.

2.088

2.079

2.07

2.075

2.09

2.08

2.084

用μW表示,插入损耗为

得到插入损耗的平均值为2.075dB,其误差为:

用dBm记录的数据来计算

其误差为:

(2)对于1550nm光源,隔离器输出端功率

365.7

365.9

365.8

366

366.2

365.92

-4.36

0.486

0.484

0.485

0.482

0.48

0.4834

0.47

得到插入损耗的平均值为0.4834dB,其误差为:

用dBm记录的数据来计算,插入损耗为:

对于1310nm光源,插入损耗约为2.075±

0.0072dB,对于1550nm光源,插入损耗约为0.4834±

0.002dB。

可见两种计算方法得出的结果基本一致,这是由于两种单位制之间存在的关系

,但显然,用

单位来的更简单方便。

并且相对于1550nm的输入功率来说,插入损耗值比较小,约为输入功率的0.5%左右,可看出光隔离器并不是对于每个波长都起隔离作用,而是对应与特定的波长工作的。

本实验的隔离器对应波长为1550nm。

求光隔离器1310nm和1550nm的反向隔离度

(2)把光隔离器反、正向分别接入1310nm稳定化光源和光功率计。

σ

7.92

7.93

7.94

7.96

7.97

7.944

0.018

-21.01

-21.00

-20.99

-20.98

-20.996

0.01

对于1310nm光源,输入光功率为:

78.6μW,-11.04dBm

用μW表示,反向隔离度为:

其误差为:

则其反向隔离度为:

用dBm记录的数据来计算,反向隔离度为:

对于1550nm光源,输入光功率为:

375.9μW,-4.24dBm

(nW)

32.13

32.12

32.10

32.08

32.04

32.09

0.032

-44.93

-44.92

-44.94

0.006

可见两种计算方法得出的结果基本一致,其中隔离度较大表明分波性能越好,可看出一种光隔离器是对应与特定的波长工作的。

表明该光隔离器对于1550nm波长起着隔离作用,对于1310nm波长隔离性能较差。

总结,可得两种波长下光隔离器的参数:

输入波长

单位制

I.L.1(dB)

C2(λ1)(dB)

1310nm

μW制

2.075±

0.0072dB

9.96±

0.01

dBm制

2.084±

0.0049dB

0.002

1550nm

0.4834±

0.002dB

40.69±

0.004

0.0006

测量光隔离器1550nm的偏振相关损耗

(1)用镜头纸擦拭光隔离器和偏振控制器的光纤的每端界面。

(2)把光隔离器正向接入偏振控制器和光功率计。

(3)把偏振控制器的另一端接入1550nm稳定化光源。

(4)手动调节偏振控制器,改变光波的偏振。

(5)调整一段时间后,记录这段时间内光功率的最大值和最小值。

自身损耗

相关损耗

μW

dBm

276.1

-5.58

269.3

-5.69

244.0

-6.12

237.7

-6.23

偏振相关损耗为:

P.D.L=-4.24-(-6.12)=1.88dB

所得偏振相关损耗值均很小,这可推测本实验所用的单模光纤为偏振非相关的,其偏振相关损耗应与偏振方向无关。

对于光隔离器,有一定程度的偏振非相关的,其偏振相关损耗应与比自身偏振损耗要大一点。

5、光隔离器回波损耗测量

(1)用镜头纸擦拭光隔离器和光耦合器(如图)的光纤的每端界面。

(2)把光耦合器的光纤1接入1550nm稳定化光源。

(3)把光耦合器的光纤3正向接入光隔离器。

(4)把光耦合器的光纤2接入光功率计。

(5)接入后即开始读数,记录数据。

(6)隔几分钟读数一次,重复四次,共记录5个数据。

输入功率

=187.4μW,-7.27dBm

nW

6.80

6.82

6.81

6.77

6.71

6.78

0.04

-51.66

-51.68

-51.72

-51.76

-51.70

0.036

(1)以μW单位制进行计算

误差为:

因此,

(2)以dBm单位制进行计算

五、思考题:

1.法拉第磁光效应与克尔磁光效应的差异及其应用?

答:

克尔磁光效应的方向受光的传播方向影响,与外加磁场的方向无关,无论外界磁场如何变化,迎着光看去光的偏振总是朝同一个方向旋转。

而在法拉第磁光旋转效应中,磁场对光材料产生作用是导致磁致旋转现象发生的原因,所以磁光材料引起的光偏振面旋转的方向取决于外加磁场的方向,与光的传播方向无关。

因此,在磁致旋光的情况下使光线多次通过磁光物质可得到旋转角的叠加。

2.光隔离器工作原理。

FaradayRotator)將原本偏振角为90度順时针调整成为45度输出。

(2)入射光经调整后为90度,而输出的光偏振角則为45度。

這時输入端便不会有自系統反射回來的光了。

正向传输时,光能顺利通过第二个偏振器(导通);

反向传输时,光偏振面再转45度,与第二个偏振器成90度,光被隔离。

3.如果采用图21.6的方案制作光隔离器,其PDL应该会是多大?

比较与图21.2的差异。

偏振相关损耗(PDL)的测量对测量系统中的扰动极其敏感,这些扰动包括光源的不稳定性,连接器的反射,甚至是测试光纤的布局。

图21.6中的回波损耗为

4.光准直器的结构与应用?

光纤准直器室由光纤和长度为0.25节距的具有合适镀层的自聚焦透镜组成。

光准直器的用途是对光纤中传输的高斯光束进行准直,以提高光纤与光纤间的耦合效率。

5.除了法拉第旋转器,是否能用其它的方法制作光隔离器?

只要能够实现旋转角累加的旋转器都可以用来制作光隔离器。

目前除了法拉第效应能够实现旋转角累加外,我还不知道其他方法可以思想旋转角叠加。

6.光隔离器的品种、型号、规格和外形尺寸

光隔离器有单级和双级之分;

按照各个参数的不同可以分为S级,P级和A级;

规格按波长的不同分别有1310nm-1550nm之分;

外形一般为筒状,尺寸规格为筒子长几十个毫米,外径一般为几个毫米。

六、参考文献:

1.林学煌等编:

《光无源器件》,人民邮电出版社,1998.

2.李玲、黄永清著:

,《光纤通信基础》,国防工业出版社,1999.

3.有关制造厂家的网址:

¡

Http:

//

4.磁光调制器件与隔离器件:

5.宋金生:

“光纤无源器件技术的发展方向”,中国电信,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 人文社科 > 教育学心理学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1