数字信号处理实验Word文档下载推荐.docx
《数字信号处理实验Word文档下载推荐.docx》由会员分享,可在线阅读,更多相关《数字信号处理实验Word文档下载推荐.docx(36页珍藏版)》请在冰豆网上搜索。
其中U表示窗口序列的能量,它等于:
在此情况下,功率谱估计量可表示为:
三、实验内容及步骤
实验中用到的信号序列:
a)
Gaussian序列
b)
衰减正弦序列
c)
三角波序列
d)反三角波序列
上机实验内容
(1)观察高斯序列的时域和幅频特性,固定信号xa(n)中参数p=8,改变q的值,使q分别等于2,4,8,观察它们的时域和幅频特性,了解当q取不同值时,对信号序列的时域幅频特性的影响;
固定q=8,改变p,使p分别等于8,13,14,观察参数p变化对信号序列的时域及幅频特性的影响,观察p等于多少时,会发生明显的泄漏现象,混叠是否也随之出现?
记录实验中观察到的现象,绘出相应的时域序列和幅频特性曲线。
(2)观察衰减正弦序列xb(n)的时域和幅频特性,a=0.1,f=0.0625,检查谱峰出现位置是否正确,注意频谱的形状,绘出幅频特性曲线,改变f,使f分别等于0.4375和0.5625,观察这两种情况下,频谱的形状和谱峰出现位置,有无混叠和泄漏现象?
说明产生现象的原因。
(3)观察三角波和反三角波序列的时域和幅频特性,用N=8点FFT分析信号序列xc(n)和xd(n)的幅频特性,观察两者的序列形状和频谱曲线有什么异同?
绘出两序列及其幅频特性曲线。
在xc(n)和xd(n)末尾补零,用N=16点FFT分析这两个信号的幅频特性,观察幅频特性发生了什么变化?
两情况的FFT频谱还有相同之处吗?
这些变化说明了什么?
(4)一个连续信号含两个频率分量,经采样得
x(n)=sin2π*0.125n+cos2π*(0.125+Δf)nn=0,1……,N-1已知N=16,Δf分别为1/16和1/64,观察其频谱;
当N=128时,Δf不变,其结果有何不同,为什么?
(5)用FFT分别实现xa(n)(p=8,q=2)和xb(n)(a=0.1,f=0.0625)的16点圆周卷积和线性卷积。
(6)产生一512点的随机序列xe(n),并用xc(n)和xe(n)作线性卷积,观察卷积前后xe(n)频谱的变化。
要求将xe(n)分成8段,分别采用重叠相加法和重叠保留法。
四,实验程序及结果图像
1,高斯序列
N=16;
n=0:
1:
15;
p=8;
q=2;
%q=4;
%q=8;
a=0.1;
f=0.0625;
xa=exp(-((n-p).^2)./q);
xb=exp(-a*n).*sin(2*pi*f*n);
figure
(1)
stem(n,xa,'
.'
);
title('
xa(n)序列'
)
xlabel('
n'
ylabel('
xa(n)'
gridon
[H,w]=freqz(xa,1,[],'
whole'
1);
Hamplitude=abs(H);
Hphase=angle(H);
Hphase=unwrap(Hphase);
figure
(2)
subplot(2,1,1)
plot(w,Hamplitude)
幅频响应'
w/(2*pi)'
|H(exp(jw))|'
subplot(2,1,2)
plot(w,Hphase)
相频响应'
fai(H(exp(jw)))'
(1)P=8,q=2时的幅频特性与相频特性曲线
(2)p=8,q=4时的幅频特性与相频特性曲线
(3)P=8,q=8时的幅频特性与相频特性曲线
(4)p=13,q=8时的幅频特性与相频特性曲线
(5)p=14,q=8时的幅频特性与相频特性曲线
(6)思考题回答
高斯序列可以作为低通滤波器使用,通过调整p,q的值,可以调整滤波器参数,其中,p决定时域中心位置,q决定点数与幅度,频域上,通过取不同的q值,可以得到不同的通带增益与过渡带宽度。
p固定时,高斯序列的中心位置固定,q的变化会影响高斯序列时域上的点数与幅度,q越大,点数越多,幅度越大,频域上,q越大,通带增益越大,过渡带越窄。
q固定为8时,p为13时发生明显泄露,此时,频谱发生混叠。
2,衰减正弦序列
(1)实验程序
f1=0.0625;
f2=0.04375;
f3=0.05625;
xb1=exp(-a*n).*sin(2*pi*f1*n);
figure
subplot(3,2,1)
stem(n,xb1,'
f=0.0625的时域特性'
xb1(n)'
[H,w]=freqz(xb1,1,[],'
subplot(3,2,2)
f=0.0625的幅频响应'
xb2=exp(-a*n).*sin(2*pi*f2*n);
subplot(3,2,3)
stem(n,xb2,'
f=0.04375的时域特性'
xb2(n)'
[H,w]=freqz(xb2,1,[],'
subplot(3,2,4)
f=0.04375的幅频响应'
xb3=exp(-a*n).*sin(2*pi*f3*n);
subplot(3,2,5)
stem(n,xb3,'
f=0.05625的时域特性'
xb3(n)'
[H,w]=freqz(xb3,1,[],'
subplot(3,2,6)
f=0.05625的幅频响应'
(2)实验结果图形显示
(3)思考题回答
衰减正弦序列可以作为带通滤波器,通过改变f的值,可以控制其中心频率。
当f改变时,频谱的形状和谱峰出现的位置会发生混叠和泄漏现象,因为f改变会导致采样间隔增大,从而导致频谱混叠的产生。
可以通过减小采样间隔或增大衰减来使混叠引起的误差在允许的范围内。
3,三角序列与反三角序列
clc
clearall;
closeall;
n1=0:
3;
xc1=n1+1;
n2=4:
7;
xc2=8-n2;
xc=[xc1,xc2];
n=[n1,n2];
stem(n,xc);
xc'
三角序列'
xd1=4-n1;
xd2=n2-3;
xd=[xd1,xd2];
stem(n,xd);
xd'
反三角序列'
N=8;
%N点的FFT
[H1,w1]=freqz(xc,1,256,'
Hamplitude1=abs(H1);
plot(2*w1,Hamplitude1)
xc幅频响应'
w/pi'
)
[H2,w2]=freqz(xd,1,256,'
Hamplitude2=abs(H2);
plot(2*w2,Hamplitude2)
xd幅频响应'
[H3,w3]=freqz(xc,1,N,'
Hamplitude3=abs(H3);
h3=stem(2*w3,Hamplitude3,'
*'
xc幅频响应进行N点FFT'
[H4,w4]=freqz(xd,1,N,'
Hamplitude4=abs(H4);
h4=stem(2*w4,Hamplitude4,'
xd幅频响应进行N点FFT'
(1)N=8时的的结果图形显示
(2)N=16时的的结果图形显示
三角波与反三角波序列在时域上互补,8点的FFT变换相同,补0后,两信号的幅频特性没有变化,但FFT变换不同了。
这些变换说明,信号的幅频特性不随其补零延拓而变化,但是FFT变换的结果依赖点数N的取值。
4,连续信号采样
N=128;
%N=16;
f1=1/16;
n=0:
N-1;
xn=sin(2*pi*0.125.*n)+cos(2*pi*(0.125+f1).*n);
stem(n,xn);
subplot(2,1,1),plot(n,abs(fft(xn)));
f=1/16幅频响应'
f2=1/64;
xn=sin(2*pi*0.125.*n)+cos(2*pi*(0.125+f2).*n);
subplot(2,1,2),plot(n,abs(fft(xn)));
f=1/64幅频响应'
);
(1)当N=16时的结果图形显示
(2)当N=128时的结果图形显示
上述结果说明频谱混叠与连续时间信号的时域采样频率fs有关,频谱泄露与时域加窗截断的长度N有关。
当N变化而Δf不变时,频谱图像变得密集,而且幅频响应变得集中而且尖锐了,宽度也变小了。
5,用FFT分别实现xa(n),和xb(n)的16点圆周卷积和线性卷积。
(1)试验程序;
%线性卷积和圆周卷积相等的条件:
N>
=n1+n2
%1线性卷积
x=conv(xa,xb);
XDft=fft(x,32);
XDftR=abs(XDft);
XDftPhase=angle(XDft);
XDftPhase=unwrap(XDftPhase);
%stem(n,x,'
stem(x,'
x(n)序列'
x(n)'
stem(XDftR,'
X(k)的幅度'
k'
|X(k)|'
stem(XDftPhase,'
X(k)的相角'
fai((X(k)))'
%2圆周卷积?
XDft161=fft(xa,N);
XDft16R1=abs(XDft161);
XDft16Phase1=angle(XDft161);
XDft16Phase1=unwrap(XDft16Phase1);
XDft162=fft(xb,N);
XDft16R2=abs(XDft162);
XDft16Phase2=angle(XDft162);
XDft16Phase2=unwrap(XDft16Phase2);
XDft16=XDft161.*XDft162;
XDft16R=XDft16R1.*XDft16R2;
XDft16Phase=XDft16Phase2+XDft16Phase1;
x=ifft(XDft16,N);
figure(3)
figure(4)
t=0:
1:
N-1;
stem(t,XDft16R,'
stem(t,XDft16Phase,'
(2)实验结果图像显示。
(3)结果分析与问题回答
N=16时,xa(n)和xb(n)的线性卷积与圆卷积结果不相同;
当N>
=32时,xa(n)和xb(n)的线性卷积与圆卷积的结果相同
(6)、产生一512点的随机序列xe(n),并用xc(n)和xe(n)作线性卷积,观察卷积前后xe(n)频谱的变化。
6、分别采用重叠相加法和重叠保留法对xc(n)和xe(n)作线性卷积。
(1)试验程序
xe=rand(1,512);
%重叠相加法
yn=zeros(1,519);
forj=0:
7
xj=xe(64*j+1:
64*(j+1));
xak=fft(xj,71);
xck=fft(xc,71);
yn1=ifft(xak.*xck);
%每段的卷积结果
temp=zeros(1,519);
temp(64*j+1:
64*j+71)=yn1;
yn=yn+temp;
%将每段的卷积结果加到yn中
end;
518;
subplot(2,1,1);
plot(n,yn);
y(n)'
xc(n)与xe(n)的线性卷积的时域波形—重叠相加法'
subplot(2,1,2);
plot(n,abs(fft(yn)));
Y(k)'
axis([0,600,0,300]);
xc(n)与xe(n)的线性卷积的幅频特性—重叠相加法'
%重叠保留法¨
k=1:
xe1=k-k;
xe_1=[xe1,xe];
yn_1=zeros(1,519);
xj_1=xe_1(64*j+1:
64*j+71);
xak_1=fft(xj_1);
xck_1=fft(xc,71);
yn1_1=ifft(xak_1.*xck_1);
%每段的卷积结果
temp_1=zeros(1,519);
temp_1(64*j+1:
64*j+64)=yn1_1(8:
71);
yn_1=yn_1+temp_1;
%将每段的卷积结果加到yn中
plot(n,yn_1);
xc(n)与xe(n)的线性卷积的时域波形—重叠保留法'
plot(n,abs(fft(yn_1)));
xc(n)与xe(n)的线性卷积的幅频特性—重叠保留法'
(2)实验结果图形显示。
(3)结果分析
重叠相加法和重叠保留法都是将长序列分段成短序列。
不同的是重叠相加法是将分成的短序列分别与短序列计算线性卷积,最后将这些分段卷积结果进行重叠相加;
而重叠保留法是将分成的短序列与短序列计算循环卷积,再从个循环卷积的结果中提取相当于线性卷积的部分。
实验三用双线性变换法设计
IIR数字滤波器
1、实验目的
(1)熟悉用双线性变换法设计IIR数字滤波器的原理与方法。
(2)掌握数字滤波器的计算机仿真方法。
(3)通过观察对实际心电图信号的滤波作用,获得数字滤波的感性知识。
二、实验内容
(1)用双线性变换法设计一个巴特沃斯低通IIR数字滤波器。
(2)以0.02π为采样间隔,打印出数字滤波器在频率区间[0,π/2]上的幅频响应特性曲线。
(3)用所设计的滤波器对实际心电图信号采样序列(在本实验后面给出)进行仿真滤波处理,并分别打印出滤波前后的心电图信号波形图,观察总结滤波作用与效果。
三、实验步骤
(1)复习有关巴特沃斯模拟滤波器设计和用双线性变换法设计IIR数字滤波器的内容,按照
例6.4.2,用双线性变换法设计数字滤波器系统函数H(z)。
例6.4.2中已求出满足本实验要求的数字滤波器系统函数:
A=0.09036
B1=1.2686,C1=-0.7051
B2=1.0106,C2=-0.3583
B3=0.9044,C3=-0.2155
由(10.5.1)式和(10.5.2)式可见,滤波器H(z)由三个二阶滤波器H1(z),H2(z)和H3(z)级联组成,如图10.5.1所示。
图10.5.1滤波器H(z)的组成
(2)编写滤波器仿真程序,计算H(z)对心电图信号采样序列x(n)的响应序列y(n)。
设yk(n)为第k级二阶滤波器Hk(z)的输出序列,yk-1(n)为输入序列,如图10.5.1所示。
由(10.5.2)式可得到差分方程:
yk(n)=Ayk-1(n)+2Ayk-1(n-1)+Ayk-1
(n-2)+Bkyk(n-1)+Ckyk(n-2)(10.5.3)
(3)在通用计算机上运行仿真滤波程序,并调用通用绘图子程序,完成实验内容
(2)和(3)。
四、思考题
用双线性变换法设计数字滤波器过程中,变换公式
中T的取值,对设计结果有无影响?
为什么?
五、实验报告要求
(1)简述实验目的及原理。
(2)由所打印的|H(ejω)|特性曲线及设计过程简述双线性变换法的特点。
(3)对比滤波前后的心电图信号波形,说明数字滤波器的滤