人教版九年级数学第23章旋转教案概要Word文档下载推荐.docx

上传人:b****6 文档编号:18913085 上传时间:2023-01-02 格式:DOCX 页数:24 大小:156.65KB
下载 相关 举报
人教版九年级数学第23章旋转教案概要Word文档下载推荐.docx_第1页
第1页 / 共24页
人教版九年级数学第23章旋转教案概要Word文档下载推荐.docx_第2页
第2页 / 共24页
人教版九年级数学第23章旋转教案概要Word文档下载推荐.docx_第3页
第3页 / 共24页
人教版九年级数学第23章旋转教案概要Word文档下载推荐.docx_第4页
第4页 / 共24页
人教版九年级数学第23章旋转教案概要Word文档下载推荐.docx_第5页
第5页 / 共24页
点击查看更多>>
下载资源
资源描述

人教版九年级数学第23章旋转教案概要Word文档下载推荐.docx

《人教版九年级数学第23章旋转教案概要Word文档下载推荐.docx》由会员分享,可在线阅读,更多相关《人教版九年级数学第23章旋转教案概要Word文档下载推荐.docx(24页珍藏版)》请在冰豆网上搜索。

人教版九年级数学第23章旋转教案概要Word文档下载推荐.docx

教学难点

1.图形旋转的基本性质的归纳与运用.

2.中心对称的基本性质的归纳与运用.

教学关键

1.利用几何直观,经历观察,产生概念;

2.利用几何操作,通过观察、探究,用不完全归纳法归纳出图形的旋转和中心对称的基本性质.

单元课时划分

本单元教学时间约需10课时,具体分配如下:

23.1图形的旋转3课时

23.2中心对称4课时

23.3课题学习;

图案设计1课时

教学活动、习题课、小结2课时

 

23.1图形的旋转

(1)

第一课时

1.什么叫旋转?

旋转中心?

旋转角?

2.什么叫旋转的对应点?

了解旋转及其旋转中心和旋转角的概念,了解旋转对应点的概念及其应用它们解决一些实际问题.

通过复习平移、轴对称的有关概念及性质,从生活中的数学开始,经历观察,产生概念,应用概念解决一些实际问题.

重难点、关键

1.重点:

旋转及对应点的有关概念及其应用.

2.难点与关键:

从活生生的数学中抽出概念.

教具、学具准备

三角尺

教学过程

一、复习引入

(学生活动)请同学们完成下面各题.

1.将如图所示的四边形ABCD平移,使点B的对应点为点D,作出平移后的图形.

2.如图,已知△ABC和直线L,请你画出△ABC关于L的对称图形△A′B′C′.

3.圆是轴对称图形吗?

等腰三角形呢?

你还能指出其它的吗?

(口述)老师点评并总结:

(1)平移的有关概念及性质.

(2)如何画一个图形关于一条直线(对称轴)的对称图形并口述它既有的一些性质.

(3)什么叫轴对称图形?

二、探索新知

我们前面已经复习平移等有关内容,生活中是否还有其它运动变化呢?

回答是肯定的,下面我们就来研究.

1.请同学们看讲台上的大时钟,有什么在不停地转动?

旋绕什么点呢?

从现在到下课时钟转了多少度?

分针转了多少度?

秒针转了多少度?

(口答)老师点评:

时针、分针、秒针在不停地转动,它们都绕时针的中心.如果从现在到下课时针转了_______度,分针转了_______度,秒针转了______度.

2.再看我自制的好像风车风轮的玩具,它可以不停地转动.如何转到新的位置?

(老师点评略)

3.第1、2两题有什么共同特点呢?

共同特点是如果我们把时针、风车风轮当成一个图形,那么这些图形都可以绕着某一固定点转动一定的角度.

像这样,把一个图形绕着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角叫做旋转角.

如果图形上的点P经过旋转变为点P′,那么这两个点叫做这个旋转的对应点.

下面我们来运用这些概念来解决一些问题.

例1.如图,如果把钟表的指针看做三角形OAB,它绕O点按顺时针方向旋转得到△OEF,在这个旋转过程中:

(1)旋转中心是什么?

旋转角是什么?

(2)经过旋转,点A、B分别移动到什么位置?

解:

(1)旋转中心是O,∠AOE、∠BOF等都是旋转角.

(2)经过旋转,点A和点B分别移动到点E和点F的位置.

最后强调,这个旋转中心是固定的,即正方形对角线的交点,但旋转角和对应点都是不唯一的.

三、巩固练习

教材P56练习1、2、3.

四、归纳小结(学生总结,老师点评)

本节课应掌握:

把一个图形绕着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角叫做旋转角.

如果图形上的点P经过旋转变为点P′,那么这两个点叫做这个旋转的对应点.

五、教学反思

补充练习

一、选择题

1.在26个英文大写字母中,通过旋转180°

后能与原字母重合的有().

A.6个B.7个C.8个D.9个

2.从5点15分到5点20分,分针旋转的度数为().

A.20°

B.26°

C.30°

D.36°

3.如图1,在Rt△ABC中,∠ACB=90°

,∠A=40°

,以直角顶点C为旋转中心,将△ABC旋转到△A′B′C的位置,其中A′、B′分别是A、B的对应点,且点B在斜边A′B′上,直角边CA′交AB于D,则旋转角等于().

A.70°

B.80°

C.60°

D.50°

(1)

(2)(3)

二、填空题.

1.在平面内,将一个图形绕一个定点沿着某个方向转动一个角度,这样的图形运动称为________,这个定点称为________,转动的角为________.

2.如图2,△ABC与△ADE都是等腰直角三角形,∠C和∠AED都是直角,点E在AB上,如果△ABC经旋转后能与△ADE重合,那么旋转中心是点_________;

旋转的度数是_____.

3.如图3,△ABC为等边三角形,D为△ABC内一点,△ABD经过旋转后到达△ACP的位置,则,

(1)旋转中心是____;

(2)旋转角度是____;

(3)△ADP是______三角形.

23.1图形的旋转

(2)

第二课时

1.对应点到旋转中心的距离相等.

2.对应点与旋转中心所连线段的夹角等于旋转角.

3.旋转前后的图形全等及其它们的运用.

理解对应点到旋转中心的距离相等;

理解对应点与旋转中心所连线段的夹角等于旋转角;

理解旋转前、后的图形全等.掌握以上三个图形的旋转的基本性质的运用.

先复习旋转及其旋转中心、旋转角和旋转的对应点概念,接着用操作几何、实验探究图形的旋转的基本性质.

图形的旋转的基本性质及其应用.

运用操作实验几何得出图形的旋转的三条基本性质.

(学生活动)老师口问,学生口答.

什么叫旋转中心?

什么叫旋转角?

3.请独立完成下面的题目.

如图,O是六个正三角形的公共顶点,正六边形ABCDEF能否看做是某条线段绕O点旋转若干次所形成的图形?

(老师点评)分析:

能.看做是一条边(如线段AB)绕O点,按照同一方法连续旋转60°

、120°

、180°

、240°

、300°

形成的.

上面的解题过程中,能否得出什么结论,请回答下面的问题:

1.A、B、C、D、E、F到O点的距离是否相等?

2.对应点与旋转中心所连线段的夹角∠BOC、∠COD、∠DOE、∠EOF、∠FOA是否相等?

3.旋转前、后的图形这里指三角形△OAB、△OBC、△OCD、△ODE、△OEF、△OFA全等吗?

老师点评:

(1)距离相等,

(2)夹角相等,(3)前后图形全等,那么这个是否有一般性?

下面请看这个实验.

请看我手里拿着的硬纸板,我在硬纸板上挖下一个三角形的洞,再挖一个点O作为旋转中心,把挖好的硬纸板放在黑板上,先在黑板上描出这个挖掉的三角形图案(△ABC),然后围绕旋转中心O转动硬纸板,在黑板上再描出这个挖掉的三角形(△A′B′C′),移去硬纸板.

(分组讨论)根据图回答下面问题(一组推荐一人上台说明)

1.线段OA与OA′,OB与OB′,OC与OC′有什么关系?

2.∠AOA′,∠BOB′,∠COC′有什么关系?

3.△ABC与△A′B′C′形状和大小有什么关系?

1.OA=OA′,OB=OB′,OC=OC′,也就是对应点到旋转中心相等.

2.∠AOA′=∠BOB′=∠COC′,我们把这三个相等的角,即对应点与旋转中心所连线段的夹角称为旋转角.

3.△ABC和△A′B′C′形状相同和大小相等,即全等.

综合以上的实验操作和刚才作的(3),得出

(1)对应点到旋转中心的距离相等;

(2)对应点与旋转中心所连线段的夹角等于旋转角;

(3)旋转前、后的图形全等.

例1.如图23.1-4,E是正方形ABCD中CD边上任意一点,以点A为中心,把

顺时针旋转

,画出旋转后的图形,并作答下面的问题。

(1)旋转中心是哪一点?

(2)旋转了多少度?

(3)如果连结EF,那么△AEF是怎样的三角形?

分析:

作图过程略,△ADE旋转

后得到△ABF,因为△ABF是△ADE的旋转图形,可直接得出旋转中心和旋转角,要求AF的长度,根据旋转前后的对应线段相等,只要求AE的长度,由勾股定理很容易得到.△ABF与△ADE是完全重合的,所以它是直角三角形.

解:

作图过程见课本。

(1)旋转中心是A点.

(2)∵△ABF是由△ADE旋转而成的

∴B是D的对应点

∴∠DAB=90°

就是旋转角

(4)∵∠EAF=90°

(与旋转角相等)且AF=AE∴△EAF是等腰直角三角形.

三、巩固练习教材P58练习1、2.

四、作业布置教材P59习题23.1第1题

五、归纳小结(学生总结,老师点评)

本节课应掌握:

1.对应点到旋转中心的距离相等;

2.对应点与旋转中心所连线段的夹角等于旋转角;

3.旋转前、后的图形全等及其它们的应用.

六、教学反思

1.△ABC绕着A点旋转后得到△AB′C′,若∠BAC′=130°

,∠BAC=80°

,则旋转角等于()

A.50°

B.210°

C.50°

或210°

D.130°

2.在图形旋转中,下列说法错误的是()

A.在图形上的每一点到旋转中心的距离相等

B.图形上每一点移动的角度相同

C.图形上可能存在不动的点

D.图形上任意两点的连线与其对应两点的连线长度相等

3.如图,下面的四个图案中,既包含图形的旋转,又包含图形的轴对称的是()

二、填空题

1.在作旋转图形中,各对应点与旋转中心的距离________.

2.如图,△ABC和△ADE均是顶角为42°

的等腰三角形,BC、DE分别是底边,图中的△ABD绕A旋转42°

后得到的图形是________,它们之间的关系是______,其中BD=_________.

3.如图,自正方形ABCD的顶点A引两条射线分别交BC、CD于E、F,∠EAF=45°

,在保持∠EAF=45°

的前提下,当点E、F分别在边BC、CD上移动时,BE+DF与EF的关系是________.

23.2中心对称

(1)

两个图形关于这个点对称或中心对称、对称中心、关于中心的对称点等概念及其运用它们解决一些实际问题.

了解中心对称、对称中心、关于中心的对称点等概念及掌握这些概念解决一些问题.

复习运用旋转知识作图,旋转角度变化,设计出不同的美丽图案来引入旋转180°

的特殊旋转──中心对称的概念,并运用它解决一些实际问题.

利用中心对称、对称中心、关于中心对称点的概念解决一些问题.

从一般旋转中导入中心对称.

三角尺

请同学们独立完成下题.

如图,△ABC绕点O旋转,使点A旋转到点D处,画出旋转后的三角形,并写出简要作法.

老师点评:

分析,本题已知旋转后点A的对应点是点D,且旋转中心也已知,所以关键是找出旋转角和旋转方向.显然,逆时针或顺时针旋转都符合要求,一般我们选择小于180°

的旋转角为宜,故本题选择的旋转方向为顺时针方向;

已知一对对应点和旋转中心,很容易确定旋转角.如图,连结OA、OD,则∠AOD即为旋转角.接下来根据“任意一对对应点与旋转中心的连线所成的角都是旋转角”和“对应点到旋转中心的距离相等”这两个依据来作图即可.

作法:

(1)连结OA、OB、OC、OD;

(2)分别以OB、OB为边作∠BOM=∠CON=∠AOD;

(3)分别截取OE=OB,OF=OC;

(4)依次连结DE、EF、FD;

即:

△DEF就是所求作的三角形,如图所示.

问题:

作出如图的两个图形绕点O旋转180°

的图案,并回答下列的问题:

1.以O为旋转中心,旋转180°

后两个图形是否重合?

2.各对称点绕O旋转180°

后,这三点是否在一条直线上?

可以发现,如图所示的两个图案绕O旋转180°

都是重合的,即甲图与乙图重合,△OAB与△COD重合.

像这样,把一个图形绕着某一个点旋转180°

,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.

这两个图形中的对应点叫做关于中心的对称点.

例1.如图,四边形ABCD绕D点旋转180°

,请作出旋转后的图案,写出作法并回答.

(1)这两个图形是中心对称图形吗?

如果是对称中心是哪一点?

如果不是,请说明理由.

(2)如果是中心对称,那么A、B、C、D关于中心的对称点是哪些点.

(1)根据中心对称的定义便直接可知这两个图形是中心对称图形,对称中心就是旋转中心.

(3)旋转后的对应点,便是中心的对称点.

作法:

(1)延长AD,并且使得DA′=AD

(2)同样可得:

BD=B′D,CD=C′D

(3)连结A′B′、B′C′、C′D,则四边形A′B′C′D为所求的四边形,如图23-44所示.

答:

(1)根据中心对称的定义便知这两个图形是中心对称图形,对称中心是D点.

(2)A、B、C、D关于中心D的对称点是A′、B′、C′、D′,这里的D′与D重合.

教材P64练习1.

四、归纳总结

把一个图形绕着某一个点旋转180°

这两个图形中的对应点叫做关于中心的对称点

五、课后反思

1.在英文字母VWXYZ中,是中心对称的英文字母的个数有()个.

A.1B.2C.3D.4

2.下面的图案中,是中心对称图形的个数有()个

3.如图,把一张长方形ABCD的纸片,沿EF折叠后,ED′与BC的交点为G,点D、C分别落在D′、C′的位置上,若∠EFG=55°

,则∠1=()

A.55°

B.125°

C.70°

D.110°

1.关于某一点成中心对称的两个图形,对称点连线必通过_________.

2.把一个图形绕着某一个点旋转180°

,如果它能够与另一个图形重合,那么就说这两个图形是_________图形.

3.用两个全等的直角非等腰三角形可以拼成下面图形中的哪几种:

_______(填序号)

(1)长方形;

(2)菱形;

(3)正方形;

(4)一般的平行四边形;

(5)等腰三角形;

(6)梯形.

23.2中心对称

(2)

1.关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分.

2.关于中心对称的两个图形是全等图形.

理解关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分;

理解关于中心对称的两个图形是全等图形;

掌握这两个性质的运用.

复习中心对称的基本概念(中心对称、对称中心,关于中心的对称点),提出问题,让学生分组讨论解决问题,老师引导总结中心对称的基本性质.

中心对称的两条基本性质及其运用.

让学生合作讨论,得出中心对称的两条基本性质.

(老师口问,学生口答)

1.什么叫中心对称?

什么叫对称中心?

2.什么叫关于中心的对称点?

3.请同学随便画一三角形,以三角形一顶点为对称中心,画出这个三角形关于这个对称中心的对称图形,并分组讨论能得到什么结论.

(每组推荐一人上台陈述,老师点评)

(老师)在黑板上画一个三角形ABC,分两种情况作两个图形

(1)作△ABC一顶点为对称中心的对称图形;

(2)作关于一定点O为对称中心的对称图形.

第一步,画出△ABC.

第二步,以△ABC的C点(或O点)为中心,旋转180°

画出△A′B′和△A′B′C′,如图1和用2所示.

(1)

(2)

从图1中可以得出△ABC与△A′B′C是全等三角形;

分别连接对称点AA′、BB′、CC′,点O在这些线段上且O平分这些线段.

下面,我们就以图2为例来证明这两个结论.

证明:

(1)在△ABC和△A′B′C′中,

OA=OA′,OB=OB′,∠AOB=∠A′OB′

∴△AOB≌△A′OB′

∴AB=A′B′

同理可证:

AC=A′C′,BC=B′C′

∴△ABC≌△A′B′C′

(2)点A′是点A绕点O旋转180°

后得到的,即线段OA绕点O旋转180°

得到线段OA′,所以点O在线段AA′上,且OA=OA′,即点O是线段AA′的中点.

同样地,点O也在线段BB′和CC′上,且OB=OB′,OC=OC′,即点O是BB′和CC′的中点.

因此,我们就得到

1.关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分.

例1.如图,已知△ABC和点O,画出△DEF,使△DEF和△ABC关于点O成中心对称.

中心对称就是旋转180°

,关于点O成中心对称就是绕O旋转180°

,因此,我们连AO、BO、CO并延长,取与它们相等的线段即可得到.

(1)连结AO并延长AO到D,使OD=OA,于是得到点A的对称点D,如图所示.

(2)同样画出点B和点C的对称点E和F.

(3)顺次连结DE、EF、FD.

则△DEF即为所求的三角形.

例2.(学生练习,老师点评)如图,已知四边形ABCD和点O,画四边形A′B′C′D′,使四边形A′B′C′D′和四边形ABCD关于点O成中心对称(只保留作图痕迹,不要求写出作法).

二、巩固练习

教材P64练习.2

中心对称的两条基本性质:

1.关于中心对称的两个图形,对应点所连线都经过对称中心,而且被对称中心所平分;

2.关于中心对称的两个图形是全等图形及其它们的应用.

五、布置作业

1.教材P67复习巩固1.

1.下面图形中既是轴对称图形又是中心对称图形的是()

A.直角B.等边三角形C.直角梯形D.两条相交直线

2.下列命题中真命题是()

A.两个等腰三角形一定全等

B.正多边形的每一个内角的度数随边数增多而减少

C.菱形既是中心对称图形,又是轴对称图形

D.两直线平行,同旁内角相等

3.将矩形ABCD沿AE折叠,得到如图的所示的图形,已知∠CED′=60°

,则∠AED的大小是()

A.60°

B.50°

C.75°

D.55°

23.2中心对称(3)

第三课时

1.中心对称图形的概念.

2.对称中心的概念及其它们的运用.

了解中心对称图形的概念及中心对称图形的对称中心的概念,掌握这两个概念的应用.

复习两个图形关于中心对称的有关概念,利用这个所学知识探索一个图形是中心对称图形的有关概念及其它的运用.

中心对称图形的有关概念及其它们的运用.

区别关于中心对称的两个图形和中心对称图形.

三角形

1.(老师口问)口答:

关于中心对称的两个图形具有什么性质?

(老师口述):

关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分.

关于中心对称的两个图形是全等图形.

2.(学生活动)作图题.

(1)作出线段AO关于O点的对称图形,如图所示.

(2)作出三角形AOB关于O点的对称图形,如图所示.

(2)延长AO使OC=AO,

延长BO使OD=BO,

连结CD

则△COD为所求的,如图所示.

从另一个角度看,上面的

(1)题就是将线段AB绕它的中点旋转180°

,因为OA=OB,所以,就是线段AB绕它的中点旋转180°

后与它重合.

上面的

(2)题,连结AD、BC,则刚才的两个关于中心对称的两个图形,就成平行四边形,如图所示.

∵AO=OC,BO=OD,∠AOB=∠COD

∴△

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 医药卫生 > 药学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1