外文资料翻译信号与系统Word文档格式.docx

上传人:b****6 文档编号:18812306 上传时间:2023-01-01 格式:DOCX 页数:18 大小:80.11KB
下载 相关 举报
外文资料翻译信号与系统Word文档格式.docx_第1页
第1页 / 共18页
外文资料翻译信号与系统Word文档格式.docx_第2页
第2页 / 共18页
外文资料翻译信号与系统Word文档格式.docx_第3页
第3页 / 共18页
外文资料翻译信号与系统Word文档格式.docx_第4页
第4页 / 共18页
外文资料翻译信号与系统Word文档格式.docx_第5页
第5页 / 共18页
点击查看更多>>
下载资源
资源描述

外文资料翻译信号与系统Word文档格式.docx

《外文资料翻译信号与系统Word文档格式.docx》由会员分享,可在线阅读,更多相关《外文资料翻译信号与系统Word文档格式.docx(18页珍藏版)》请在冰豆网上搜索。

外文资料翻译信号与系统Word文档格式.docx

Exponentialsequencesoftheform

X(n)=

(3)

Playaroleindiscretetimesignalprocessingsimilartotheroleplayedbyexponentialfunctionsincontinuoustimesignalprocessing.Specifically,theyareeigenfunctionsofdiscretetimelinearsystemandforthatreasonformthebasisfortransformanalysistechniques.When︳α︳=1,x(n)takestheform

x(n)=A

(4)

Becausethevariablenisaninteger,complexexponentialsequencesseparatedbyintegermultiplesof2πinω(frequency)areidenticalsequences,I.e:

(5)

Thisfactformsthecoreofmanyoftheimportantdifferencesbetweentherepresentationofdiscretetimesignalsandsystems.

Ageneralsinusoidalsequencecanbeexpressedas

x(n)=Acos(

n+Φ)(6)

whereAistheamplitude,

thefrequency,andΦthephase.

Incontrastwithcontinuoustimesinusoids,adiscretetimesinusoidalsignalisnotnecessarilyperiodicandifitistheperiodicandifitis,theperiodis2π/ω0isaninteger.

Inbothcontinuoustimeanddiscretetime,theimportanceofsinusoidalsignalsliesinthefactsthatabroadclassofsignalsandthattheresponseoflineartimeinvariantsystemstoasinusoidalsignalissinusoidalwiththesamefrequencyandwithachangeinonlytheamplitudeandphase.

Systems:

Ingeneral,asystemmapsaninputsignalx(n)toanoutputsignaly(n)throughasystemtransformationT{.}.Thedefinitionofasystemisverybroad.withoutsomerestrictions,thecharacterizationofasystemrequiresacompleteinput-outputrelationshipknowingtheoutputofasystemtoacertainsetofinputsdosenotallowustodeterminetheoutputofasystemtoothersetsofinputs.Twotypesofrestrictionsthatgreatlysimplifythecharacterizationandanalysisofasystemarelinearityandtimeinvariance,alternativelyreferredasshiftinvariance.Fortunately,manysystemcanoftenbeapproximatedbyalinearandtimeinvariantsystem.Thelinearityofasystemisdefinedthroughtheprincipleofsuperposition:

T{ax1(n)+bx2(n)}=ay1(n)+by2(n)(7)

WhereT{x1(n)}=y1(n),T{x2(n)}=y2(n),andaandbareanyscalarconstants.

TimeinvarianceofasystemisdefinedasTimeinvariance

T{x(n-n0)}=y(n-n0)(8)

Wherey(n)=T{x(n)}and

isaintegerlinearityandtimeinvarianceareindependentproperties,i.e,asystemmayhaveonebutnottheotherproperty,bothorneither.

Foralinearandtimeinvariant(LTI)system,thesystemresponsey(n)isgivenby

y(n)=

(9)

wherex(n)istheinputandh(n)istheresponseofthesystemwhentheinputisδ(n).Eq(9)istheconvolutionsum.

Aswithcontinuoustimeconvolution,theconvolutionoperatorinEq(9)iscommutativeandassociativeanddistributesoveraddition:

Commutative:

x(n)*y(n)=y(n)*x(n)(10)

Associative:

[x(n)*y(n)]*w(n)=x(n)*[y(n)*w(n)](11)

Distributive:

x(n)*[y(n)+w(n)]=x(n)*y(n)+x(n)*w(n)(12)

Incontinuoustimesystems,convolutionisprimarilyananalyticaltool.Fordiscretetimesystem,theconvolutionsum.InadditiontobeingimportantintheanalysisofLTIsystems,namelythoseforwhichtheimpulseresponseifoffinitelength(FIRsystems).

Twoadditionalsystempropertiesthatarereferredtofrequentlyarethepropertiesofstabilityandcausality.Asystemisconsideredstableintheboundedinput-bounderoutput(BIBO)senseifandonlyifaboundedinputalwaysleadstoaboundedoutput.AnecessaryandsufficientconditionforanLTIsystemtobestableisthatunitsampleresponseh(n)beabsolutelysummable

ForanLTIsystem,

Stability

(13)

BecauseofEq.(13),anabsolutelysummablesequenceisoftenreferredtoasastablesequence.

Asystemisreferredtoascausalifandonlyif,foreachvalueofn,sayn,y(n)doesnotdependonvaluesoftheinputforn<

n0.AnecessaryandsufficientconditionforanLTIsystemtobecausalisthatitsunitsampleresponseh(n)bezeroforn<

0.ForanLTIsystem.Causality:

h(n)=0forn<

0(14)

BecauseofEq.14.asequencethatiszeroforn<

0isoftenreferredtoasacausalsequence.

1.Frequency-domainrepresentationofsignals

Inthissection,wesummarizetherepresentationofsequencesaslinearcombinationsofcomplexexponentials,firstforperiodicsequenceusingthediscrete-timeFourierseries,nextforstablesequencesusingthediscrete-timeFouriertransform,thenthroughageneralizationofdiscrete-timeFouriertransform,namely,thez-transform,andfinallyforfinite-extentsequenceusingthediscreteFouriertransform.Insection1.3.3.wereviewtheuseoftheserepresentationincharacteringLITsystems.

Discrete-timeFourierseries

Anyperiodicsequencex(n)withperiodNcanberepresentedthroughthediscretetimeseries(DFS)pairinEqs.(15)and(16)

Synthesisequation:

=

(15)

Analysisequation:

=

(16)

Thesynthesisequationexpressestheperiodicsequenceasalinearcombinationofharmonicallyrelatedcomplexexponentials.ThechoiceofinterpretingtheDFScoefficientsX(k)eitheraszerooutsidetherange0≦k≦(N-1)orasperiodicallyacceptedconvention,however,tointerpretX(k)asperiodictomaintainadualitybetweentheanalysisandsynthesisequations.

2.DiscreteTimeFourierTransform

Anystablesequencex(n)(i.e.onethatisabsolutelysummable)canberepresentedasalinearcombinationofcomplexexponentials.Foraperiodicstablesequences,thesynthesisequationtakestheformofEq.(17),andtheanalysisequationtakestheformofEq.(18)

synthesisequation:

x(n)=

(17)

analysisequation:

X(ω)=

(18)

TorelatethediscretetimeFourierTransformandthediscretetimeFourierTransformseries,considerastablesequencex(n)andtheperiodicsignalx1(n)formedbytimealiasingx(n),i.e

(19)

ThentheDFScoefficientsofx1(n)areproportionaltosamplesspacedby2π/NoftheFourierTransformx(n).Specifically,

X1(k0=1/NX(ω)

(20)

Amongotherthings,thisimpliesthattheDFScoefficientsofaperiodicsignalareproportionaltothediscreteFourierTransformofoneperiod.

3.ZTransform

AgeneralizationoftheFourierTransform,theztransform,permitstherepresentationofabroaderclassofsignalsasalinearcombinationofcomplexexponentials,forwhichthemagnitudesmayormaynotbeunity.

TheZTransformanalysisandsynthesisequationsareasfollows:

synthesisequations:

(21)

analysisequations:

X(z)=

(22)

FromEqs.(18)and(22),X(ω)isrelatetoX(z)byX(ω)=X(z)z=

I.e,forastablesequence,theFourierTransformX(ω)istheZTransformevaluatedonthecontour|z|=1,referredtoastheunitcircle.

Eq.(22)convergeonlyforsomevalueofzandnotothers,TherangeofvaluesofzforwhichX(z)converges,i.e,theregionofconvergence(ROC),correspondstothevaluesofzforwhichx(n)z-nisabsolutelysummable.

Wesummarizethepropertiesofthez-transformbutalsooftheROC.Forexample,thetwosequences

and

Havez-transformsthatareidenticalalgebraicallyandthatdifferonlyintheROC.

ThesynthesisequationasexpressedinEq.(21)isacontourintegralwiththecontourencirclingtheoriginandcontainedwithintheregionofconvergence.Whilethisequationprovidesaformalmeansforobtainingx(n)fromX(z),itsevaluationrequirescontourintegration.Suchanintegertediousandusuallyunnecessary.WhenX(z)isarationalfunctionofz,amoretypicallyapproachistoexpandX(z)usingapartialfractionofequation.Theinversez-transformoftheindividualsimplertermscanusuallythenberecognizedbyinspection.

ThereareanumberofimportantpropertiesoftheROCthat,togetherwithpropertiesofthetimedomainsequence,permitimplicitspecificationoftheROC.Thispropertiesaresummarizedasfollows:

Propotiey1.TheROCisaconnectedregion.

Propotiey2.Forarationalz-transform,theROCdoesnotcontainanypolesandisboundedbypoles.

Propotiey3.Ifx(n)isarightsidedsequenceandifthecircle│z│=r0isintheROC,thenallfinitevaluesofzforwhich0<

│z│<

r0willbeintheROC.

Propotiey4.Ifx(n)isaleftsidedsequenceandifthecircle│z│=r0isintheROC,thenallvaluesofzforwhich0<

Propotiey5.Ifx(n)isastableandcasualsequencewitharationalz

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > PPT模板 > 中国风

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1