苏教版六年级下解决问题的策略教材分析和教学设计Word文档格式.docx

上传人:b****6 文档编号:18715350 上传时间:2022-12-31 格式:DOCX 页数:11 大小:25.78KB
下载 相关 举报
苏教版六年级下解决问题的策略教材分析和教学设计Word文档格式.docx_第1页
第1页 / 共11页
苏教版六年级下解决问题的策略教材分析和教学设计Word文档格式.docx_第2页
第2页 / 共11页
苏教版六年级下解决问题的策略教材分析和教学设计Word文档格式.docx_第3页
第3页 / 共11页
苏教版六年级下解决问题的策略教材分析和教学设计Word文档格式.docx_第4页
第4页 / 共11页
苏教版六年级下解决问题的策略教材分析和教学设计Word文档格式.docx_第5页
第5页 / 共11页
点击查看更多>>
下载资源
资源描述

苏教版六年级下解决问题的策略教材分析和教学设计Word文档格式.docx

《苏教版六年级下解决问题的策略教材分析和教学设计Word文档格式.docx》由会员分享,可在线阅读,更多相关《苏教版六年级下解决问题的策略教材分析和教学设计Word文档格式.docx(11页珍藏版)》请在冰豆网上搜索。

苏教版六年级下解决问题的策略教材分析和教学设计Word文档格式.docx

应该说,在他们的认知结构里储存了较多的问题范例,以及这些问题的解法模型。

他们在学习转化策略、假设策略时,初步体会了转化、假设的思想与方法,还进行过一些转化或假设的活动。

现在,可以通过“模式识别”顺利解决认识的问题,可以通过“问题转化”解决不熟悉的问题,可以通过“模型还原”解题并检验结果,他们解决问题的资源已经相当丰富。

本单元让学生利用已有资源继续解决实际问题,进一步提升思维水平,提高解决问题的能力。

教学解决问题的策略,一般有两大类内容:

一类是传递新知识、新思想、新方法,通过新的内容提高解决问题的能力。

另一类是应用已有的解决问题的知识经验、思想方法,加强对策略的体验和方法的领悟,从深刻性、灵活性、综合性上提高解决问题的能力。

本单元的编排,体现了后一类的策略教学。

(一)分析某个分数的意义,联系不同的知识,作出不同的推理,给出不同的解法,体会策略和方法的多样性

“选择一种方法列式解答”是经过“问题转化”以后的“模式识别”。

利用已有的模型解决转化后的问题,也就是解答原来的问题。

学生采用任何一种解法都可以,但不是要求他们“一题多解”。

“检验”十分重要,应把得数放到原来的问题情境里检验是否正确。

教学解决问题的策略,目光不能局限在列式解答以及求出得数上面,要重视策略的选择和使用。

从大处讲,多数学生使用转化策略,把一个陌生的、较难的问题转化成熟悉的、会解答的问题,他们选择了相同的解决问题策略。

教材要求学生说说“你选择了什么策略,是怎样想的”,希望他们在交流中获得这些体验。

所以,组织学生交流,不能停留在怎样解答、算式怎样、结果对不对的上面,而要挖掘深层次的思考,说出为什么转化、怎样转化、联系了什么知识、应用了什么方法……通过相互理解和相互评价,体会方法的多样性。

还应该看到,解答例1时的转化,决定于对分数意义的理解与解释。

如果概念准确,概念系统完善,从分数意义出发的推理就严密、流畅,转化也就顺利、有效。

反之,如果分数概念模糊,分数和其他数学概念没有建立实质性联系,要想通过推理实现问题的转化将是很难的。

为此,练习五第1题安排了分数与比的转化练习,要求学生根据示意图里的数量关系,写出分数,并转化成比。

或者写出比,再转化成分数。

这道题可以看作沟通数学概念之间联系,组建概念系统的练习,有助于问题的转化。

教材提倡学生利用图形直观帮助联想,第2题根据已知的比或百分数,把线段图补充完整,要求借助线段图,把稍复杂的问题转化成简单的问题,探索原来问题的解法。

在线段图上可以联想到的数学信息越多,思维就越开放,问题转化的思路会越开阔,解决问题的资源也就越充分。

(二)解决同一个问题,提出几个不同的假设,采用几种不同的形式,体会策略和方法的多样性

例2的问题情境是42人正好坐满10只船,求大船和小船各有几只。

这个问题的题意并不复杂,学生能够理解。

但是,解法不容易想到,一般的分析数量关系的方法派不上用场。

教材问学生“解决这个问题,你准备用什么策略”,不要求说出解题思路和算法,而是鼓励他们从已经学过的列表、画图、枚举、假设和转化策略里自主选择解题方法。

正像“辣椒”卡通的画图、“萝卜”卡通的列举、“番茄”卡通的假设那样,每个学生都要有自己的选择,班集体里就会呈现策略多样化。

无论用哪种策略解决问题,大船和小船一共10只是不能改变的。

“辣椒”卡通画了10只大船,每只船上的5个圆表示坐5人,这些船上一共可以坐50人,比实际多了8人。

于是,从一只船上去掉2人,把这只大船换成小船;

又从另一只船上去掉2人,也用小船替换大船……像这样替换4次,6只大船和4只小船一共乘42人,得到了问题的答案。

“萝卜”卡通的想法是,租船方案可能是1只小船和9只大船、2只小船和8只大船……哪一种方案刚好坐42人,就是问题的答案。

于是把各种租船可能,有次序地列举在一张表格里,分别计算每一种方案坐的人数,与42人比对,逐渐找到问题的答案。

“番茄”卡通假设大船和小船都是5只,算出这些船一共可以坐40人,而40人比全班人数少2人,于是想办法调整大、小船的只数。

只要学生有主动解决问题的积极性,班级里一定会有更多的解题形式、更多的假设与验证。

提出的假设(或猜想)必须检验,看10只船上是不是正好坐42人。

提出的第一个假设往往不是问题的答案,船上的总人数不是比42人多,就是比42人少,需要调整大、小船的只数。

教材把替换留给学生进行,一方面培养检验假设的意识,另一方面体会替换的方向与方法。

如果10只船上的总人数比42人多,表明大船多了、小船少了,要用小船替换大船;

如果10只船上的总人数比42人少,表明大船少了、小船多了,要用大船替换小船。

替换时,可以一只一只地调整,用1只小船替换1只大船,或者用1只大船替换1只小船,并且及时检验,逐步逼近正确的结果。

也可以一下子用2只或几只小船(大船)替换2只或几只大船(小船),加快调整的速度。

如果假设的大、小船上乘坐的人数接近42人,可以一只一只地调整;

如果假设的船上人数与42人相差较大,可以每几只一调。

解答例2采用的策略具有多样性、灵活性和综合性。

多样性表现为解决同一个问题,有人画图、有人列表,有人枚举、有人猜想……都能形成思路;

灵活性表现为可以有不同的假设起点,就像假设10只大船、假设1只小船和9只大船、假设5只小船和5只大船……还可以提出其他的假设,都能通过适当的调整得到正确的结果。

综合性表现为解题以假设策略为主,还需要其他策略的配合。

把假设策略用画图形式表现,便于直观地进行调整;

把假设策略用列表形式表现,能看清检验与调整的过程,更便于寻找正确答案。

例2没有列式计算,主要是两个原因:

一是解决问题未必都要列式计算,画图和列表也是解题的方法和形式。

教学应该鼓励解题形式多样,发展学生的个性和创造性。

二是解答这道题的算式比较难列,算式蕴含的算理比较复杂。

如果列式计算,不仅增加了教学的困难,还会削弱替换活动,伤害学生的学习积极性。

1.使学生在解决问题的过程中,初步学会选择合适的策略分析数量关系,确定解题思路,并有效地解决问题。

2.使学生在选择策略解决问题的过程中,初步体会解决问题策略的多样性,获得一些灵活运用策略解决问题的经验,增强策略意识,提高分析问题和解决问题的能力。

3.使学生在解决问题的过程中,进一步感受数学知识和方法在日常生活中的广泛应用,获得解决问题的成功体验,树立学好数学的信心。

 

共三课时

第一课时解决问题的策略

(一)

第二课时解决问题的策略

(二)

第三课时练习五

第一课时 解决问题的策略

(一)

教学内容

教材第27页的例1和第28页的“练一练”,完成练习五第1~3题。

主备教师

协备教师

教学目标

1.使学生学会联系不同的知识,作出不同的推理,体会策略和方法的多样性。

2.在运用不同的策略解决问题的过程中,感受知识间的内在联系,形成最优化思想。

教学重点

掌握用转化的策略解决分数问题的方法。

教学难点

根据具体问题,确定转化后要实现的目标和转化的方法。

教学准备

教学过程

个性思考

一、回顾旧知,整理策略

谈话:

从三年级上册起,每一册数学都教学一种策略,你们知道我们学了哪些策略?

(学生可能已经忘记,教师帮助回顾整理:

依次是分析量关系的“从条件向问题推理”和“从问题向条件推理”,帮助理解题意的“列表整理”和“画图整理”,还有“枚举”“转化”“假设与替换”等策略)

提问:

这些策略你们都学会了吗?

今天我们将合理的选择这些策略来解决新的问题,大家愿意接受挑战吗?

(板书课题:

转化的策略)

二、合作探究,运用策略

1.教学例1(课件出示例1)

学生读题,自主完成。

这是一个稍复杂的分数问题,除了用刚才我们做的方法来解决,你们能否用以前学的策略来思考呢?

(引导学生进一步分析)

小组交流方法。

汇报交流情况:

(学生遇到困难可作适当的引导。

①根据“男生人数是女生的

理解

这个分数的意义,可以画线段图,看出男生人数是美术组总人数的

原来的问题就转化成美术组一共有35人,男生人数是总人数的

,女生人数是总人数的

,男生有多少人?

女生有多少人?

这是简单的求一个数的几分之几是多少的问题。

②根据分数

的意义,可以推理出“男生人数和女生人数的比是2∶3”。

原来问题就转化成美术组一共有

人,男生与女生人数的比是2∶3,男生、女生各有多少人?

这是按比例分配问题。

③根据分数

的意义,想到“女生人数看作3份,男生人数是2份”,于是产生解题思路:

先算出1份是几人,再算2份、3份各是多少人。

④把作为单位“1”的女生人数设为x,那么男生人数就是

x,利用美术组一共35人,能够列方程解题。

……

谈话:

通过刚才的汇报和交流看出大家都有各自的想法,那你们最喜欢哪一种方法呢?

为什么呢?

(让多名学生回答,征求各自的看法。

刚才我们运用了不同的策略来解决这个问题,你们能检验一下自己做的是否正确吗?

(引导学生交流检验方法)

2.做第28页的“练一练”

引导学生运用刚才学过的策略,用自己喜欢的方法来解决。

要求学生说说“你选择了什么策略,是怎样想的”(通过他们在交流中获得这些体验,让学生体会方法的多样性。

三、巩固练习,回顾策

1、练习五第1题。

要求学生根据示意图里的数量关系,写出分数,并转化成比。

(这道题可以看作沟通数学概念之间联系,组建概念系统的练习,有助于问题的转化。

2、练习五第2题。

根据已知的比或百分数,把线段图补充完整,要求借助线段图,把稍复杂的问题转化成简单的问题,探索原来问题的解法。

(在线段图上可以联想到的数学信息越多,思维就越开放,问题转化的思路会越开阔,解决问题的资源也就越充分。

四、课堂小结,提升策略

通过今天的学习,我们知道了在小学阶段学习了很多解决问题的策略,如果能合理选择,就能起到“化繁为简”的作用,帮助我们更好的解决问题。

五、课堂作业:

练习五第3题。

作业

设计

板书

第二课时 解决问题的策略

(二)

教材第28、29页例2和练一练,练习五第4、5题

1.使学生学会通过假设和调整来解决问题,进一步的提升思维水平。

2.在运用假设和调整来解决问题的过程中,体会假设与调整的多样性。

3.在解决问题的过程中,获得解决问题的成功经验,提高学好数学的信心。

学会假设和调整的策略来解决问题,并体会假设与调整的多样性。

一、谈话导入

上节课我们学习了运用已学的多种策略来解决问题,通过对条件的进一步分析和转化,使一个问题多种思维、多种解法。

今天我们继续来学习解决问题的策略。

二、探究新知

1.教学例2(课件出示例2)

全班42人去公园划船,租10只船正好坐满。

每只大船坐5人,每只小船坐3人。

租的大船、小船各有多少只?

解决这个问题,你准备选择什么策略?

学生小组讨论。

画图法。

先画10只大船坐50人,再去掉多的8人。

列举法。

从大船有9只、小船有1只开始,有序列举。

并填写右表。

(1)列表假设。

假设大船和小船同样多,那么我们要如何调整算出大船和小船各有多少只?

① 

出示表格。

②借助表格调整。

第一步:

假设租5只大船和5只小船,就会比42人少2人。

第二步:

还少2人,也就是这2人还没有上船,那要让这2人也坐上船,大船和小船的数量应该怎么调整?

先想一想,再在小组里交流想法,然后在表中填一填。

第三步:

集体交流,得出方法:

引导思考:

少了2人,需要把一些小船调整为大船,一条小船调整为一条大船可以多坐2人,2÷

2=1(条),所以调整为小船4条,大船6条。

 

检验结果。

学生口答检验方法。

三、巩固练习 

1.完成第29页“练一练”。

(1)引导学生先用第一种方法,根据要求提示动手操作,独立完成。

(2)用列表假设的方法再进行思考练习。

学生交流,并汇报想法。

2.完成练习五第4题。

根据题中所给的假设学生自主调整,并汇报调整想法。

四、课堂小结 

通过本节课的学习,我们知道了哪些解决问题的策略?

你有哪些收获?

练习五第5题。

第三课时 练习五

教材练习五第6~9题和思考题,了解“你知道吗”。

1.通过练习让学生熟练运用转化和假设的策略来解决问题。

2.在不断练习和反思中,感受运用策略对于解决特定问题的价值。

3.通过这些策略的运用,了解解题方法的多样性,感受数学知识的魅力。

在前面两节课的学习中我们主要运用了哪些策略来解决问题的?

(转化和假设的策略)你们学会了吗?

今天老师想考一考大家对这两个策略的运用情况,你们能接受挑战吗?

解决问题的策略练习课)

二、练习应用

1.练习五第6题。

出示题目:

要求先画图表示题意,再解答。

结合画的图进行分析:

要求中、下层各放了多少本书?

可以通过上层放书的数量100本,及所对应的份数5,先求一份的量是多少,再求中、下层各放了多少本书。

也可以引导学生从其他方面去思考,如把比转化成分数来解答。

2.练习五第7题。

结合图引导思考:

根据货车的速度是客车的2∕3,可以想到相遇时货车行驶的路程也是客车行驶路程的2∕3,接着让学生在图上画一画,并解答。

3.练习五第8题。

学生读题:

先在图中表示出第二、三堆的白子和黑子。

学生动手画,教师巡视、辅导。

(学生可能在第二、三堆中把白子和黑子平均分,可让学生尽量避免这种特殊情况。

结合图帮助学生理解:

第二、三堆中的白子合起来正好是完整的一堆棋子,也就是60枚,再加上第一堆中白子的数量,这样就解决了这一问题。

4.练习五第9题。

出示题目和表格。

先假设两种球分别投中的个数,再通过试验调整找出答案。

学生独立完成。

5.练习五思考题。

让学有余力的学生自己思考,独立解答。

6.课外了解。

(第32页“你知道吗”)

让学生了解我国古代的数学,渗透国情教育,并思考解决。

三、课堂小结 

通过今天这节课的练习,你有了哪些新的收获?

使学生进一步巩固策略在特定问题中的应用。

四、课堂作业:

基础训练 

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 其它

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1