届高三高考数学一轮复习讲义全套打包下载可编辑第10章 圆锥曲线Word文件下载.docx

上传人:b****5 文档编号:18689706 上传时间:2022-12-31 格式:DOCX 页数:48 大小:895.94KB
下载 相关 举报
届高三高考数学一轮复习讲义全套打包下载可编辑第10章 圆锥曲线Word文件下载.docx_第1页
第1页 / 共48页
届高三高考数学一轮复习讲义全套打包下载可编辑第10章 圆锥曲线Word文件下载.docx_第2页
第2页 / 共48页
届高三高考数学一轮复习讲义全套打包下载可编辑第10章 圆锥曲线Word文件下载.docx_第3页
第3页 / 共48页
届高三高考数学一轮复习讲义全套打包下载可编辑第10章 圆锥曲线Word文件下载.docx_第4页
第4页 / 共48页
届高三高考数学一轮复习讲义全套打包下载可编辑第10章 圆锥曲线Word文件下载.docx_第5页
第5页 / 共48页
点击查看更多>>
下载资源
资源描述

届高三高考数学一轮复习讲义全套打包下载可编辑第10章 圆锥曲线Word文件下载.docx

《届高三高考数学一轮复习讲义全套打包下载可编辑第10章 圆锥曲线Word文件下载.docx》由会员分享,可在线阅读,更多相关《届高三高考数学一轮复习讲义全套打包下载可编辑第10章 圆锥曲线Word文件下载.docx(48页珍藏版)》请在冰豆网上搜索。

届高三高考数学一轮复习讲义全套打包下载可编辑第10章 圆锥曲线Word文件下载.docx

(2)已知过焦点F1的弦AB,则△ABF2的周长为4a.

1.概念辨析

(1)平面内与两个定点F1,F2的距离之和等于常数的点的轨迹是椭圆.(  )

(2)方程mx2+ny2=1(m>

0,n>

0且m≠n)表示的曲线是椭圆.(  )

(3)椭圆上一点P与两焦点F1,F2构成△PF1F2的周长为2a+2c(其中a为椭圆的长半轴长,c为椭圆的半焦距).(  )

(4)+=1(a>

0)与+=1(a>

0)的焦距相同.(  )

答案 

(1)×

 

(2)√ (3)√ (4)√

2.小题热身

(1)椭圆+=1的离心率是(  )

A.B.

C.D.

答案 B

解析 由已知得a=3,b=2,所以c===,离心率e==.

(2)直线y=x+2与椭圆+=1有两个公共点,则m的取值范围是(  )

A.(1,+∞)B.(1,3)∪(3,+∞)

C.(3,+∞)D.(0,3)∪(3,+∞)

解析 把y=x+2代入+=1得3x2+m(x+2)2=3m,整理得(3+m)x2+4mx+m=0,

由题意得Δ=(4m)2-4m(3+m)=12m(m-1)>

0且3+m≠0,

又因为m>

0且m≠3,所以m>

1且m≠3,所以m的取值范围是(1,3)∪(3,+∞).

(3)(2015·

全国卷Ⅰ)一个圆经过椭圆+=1的三个顶点,且圆心在x轴的正半轴上,则该圆的标准方程为________.

答案 2+y2=

解析 由题意知,圆过椭圆的三个顶点(4,0),(0,2),(0,-2),设圆心为(a,0),其中a>

0,由4-a=,解得a=,所以该圆的标准方程为2+y2=.

(4)已知动点P(x,y)的坐标满足+=16,则动点P的轨迹方程为________.

答案 +=1

解析 由已知得点P到点A(0,-7)和B(0,7)的距离之和为16,且16>

|AB|,所以点P的轨迹是以A(0,-7),B(0,7)为焦点,长轴长为16的椭圆.

显然a=8,c=7,故b2=a2-c2=15,所以动点P的轨迹方程为+=1.

题型 椭圆的定义及应用

1.过椭圆+y2=1的左焦点F1作直线l交椭圆于A,B两点,F2是椭圆右焦点,则△ABF2的周长为(  )

A.8B.4

C.4D.2

答案 A

解析 因为椭圆为+y2=1,所以椭圆的半长轴a=2,由椭圆的定义可得AF1+AF2=2a=4,且BF1+BF2=2a=4,

∴△ABF2的周长为AB+AF2+BF2=(AF1+AF2)+(BF1+BF2)=4a=8.

2.在平面直角坐标系xOy中,P是椭圆+=1上的一个动点,点A(1,1),B(0,-1),则|PA|+|PB|的最大值为(  )

A.5B.4

C.3D.2

解析 如图,∵椭圆+=1,∴焦点坐标为B(0,-1)和B′(0,1),连接PB′,AB′,根据椭圆的定义,得|PB|+|PB′|=2a=4,可得|PB|=4-|PB′|,因此|PA|+|PB|=|PA|+(4-|PB′|)=4+(|PA|-|PB′|).

∵|PA|-|PB′|≤|AB′|,

∴|PA|+|PB|≤4+|AB′|=4+1=5.

当且仅当点P在AB′的延长线上时,等号成立.

综上所述,可得|PA|+|PB|的最大值为5.

3.已知F1,F2是椭圆C:

+=1(a>

0)的两个焦点,P为椭圆C上的一点,且∠F1PF2=60°

,S△PF1F2=3,则b=________.

答案 3

解析 设|PF1|=t1,|PF2|=t2,则由椭圆的定义可得t1+t2=2a,①

在△F1PF2中∠F1PF2=60°

所以t+t-2t1t2·

cos60°

=4c2,②

由①2-②得3t1t2=4a2-4c2=4b2,

所以S△F1PF2=t1t2·

sin60°

=×

b2×

=3,所以b=3.

利用定义求焦点三角形及最值的方法

1.设椭圆+=1的左、右焦点分别为F1,F2,过焦点F1的直线交椭圆于A(x1,y1),B(x2,y2)两点,若△ABF2的内切圆的面积为π,则|y1-y2|=(  )

A.3B.6

C.9D.12

解析 画出图形如图所示.

∵椭圆方程为+=1,

∴a=3,b=,c=2.

又△ABF2的内切圆的面积为π,

∴△ABF2内切圆的半径r=1,

∴S△ABF2=×

(|AB|+|BF2|+|AF2|)×

r

4a×

r=2ar=6,

又S△ABF2=×

|y1-y2|×

2c=2|y1-y2|,

∴2|y1-y2|=6,∴|y1-y2|=3.

2.(2018·

安徽皖江模拟)已知F1,F2是长轴长为4的椭圆C:

0)的左、右焦点,P是椭圆上一点,则△PF1F2面积的最大值为________.

答案 2

解析 解法一:

∵△PF1F2的面积为|PF1||PF2|·

sin∠F1PF2≤2=a2.又∵2a=4,∴a2=4,∴△PF1F2面积的最大值为2.

解法二:

由题意可知2a=4,解得a=2.当P点到F1F2距离最大时,S△PF1F2最大,此时P为短轴端点,

S△PF1F2=·

2c·

b=bc.

又∵a2=b2+c2=4,∴bc≤=2,

∴当b=c=时,△PF1F2面积最大,为2.

题型 椭圆的标准方程及应用

1.“2<

m<

6”是“方程+=1表示椭圆”的(  )

A.充分不必要条件B.必要不充分条件

C.充要条件D.既不充分也不必要条件

解析 方程+=1表示椭圆⇔

解得2<

6且m≠4,

所以“2<

6”是“方程+=1表示椭圆”的必要不充分条件.

2.若椭圆的对称轴为坐标轴,长轴长与短轴长的和为10,一个焦点的坐标是(-,0),则椭圆的标准方程为________.

解析 由题意得,该椭圆的焦点在x轴上,

c=,2a+2b=10,即a+b=5,

又因为a2-b2=c2=5,

所以a-b=1,解得a=3,b=2.

所以椭圆的标准方程是+=1.

3.已知A,B是圆2+y2=4(F为圆心)上一动点,线段AB的垂直平分线交BF于点P,则动点P的轨迹方程为________.

答案 x2+y2=1

解析 如图,由题意知|PA|=|PB|,|PF|+|BP|=2.所以|PA|+|PF|=2且|PA|+|PF|>

|AF|,即动点P的轨迹是以A,F为焦点的椭圆,a=1,c=,b2=.所以动点P的轨迹方程为x2+y2=1.

1.定义法求椭圆的标准方程

根据椭圆的定义确定a2,b2的值,再结合焦点位置求出椭圆的方程.其中常用的关系有:

(1)b2=a2-c2;

(2)椭圆上任意一点到椭圆两焦点的距离之和等于2a;

(3)椭圆上一短轴顶点到一焦点的距离等于实半轴长a.

2.待定系数法求椭圆的标准方程的四步骤

提醒:

当椭圆的焦点位置不明确时,可设为+=1(m>

0,m≠n),也可设为Ax2+By2=1(A>

0,B>

0,且A≠B).可简记为“先定型,再定量”.                   

1.与圆C1:

(x+3)2+y2=1外切,且与圆C2:

(x-3)2+y2=81内切的动圆圆心P的轨迹方程为________.

解析 设动圆的半径为r,圆心为P(x,y),则有|PC1|=r+1,|PC2|=9-r.

所以|PC1|+|PC2|=10>

|C1C2|,

所以点P的轨迹是以C1(-3,0),C2(3,0)为焦点,长轴长为10的椭圆,点P的轨迹方程为+=1.

2.已知中心在坐标原点的椭圆过点A(-3,0),且离心率e=,则椭圆的标准方程为________.

答案 +=1或+=1

解析 若焦点在x轴上,由题知a=3,因为椭圆的离心率e=,c=,b=2,所以椭圆方程是+=1.若焦点在y轴上,则b=3,a2-c2=9,又离心率e==,解得a2=,所以椭圆方程是+=1.

题型 椭圆的几何性质

1.已知椭圆C1:

+=1,C2:

+=1,则(  )

A.C1与C2顶点相同B.C1与C2长轴长相同

C.C1与C2短轴长相同D.C1与C2焦距相等

答案 D

解析 由两个椭圆的标准方程可知:

C1的顶点坐标为(±

2,0),(0,±

2),长轴长为4,短轴长为4,焦距为4;

C2的顶点坐标为(±

4,0),(0,±

2),长轴长为8,短轴长为4,焦距为4.故选D.

全国卷Ⅱ)已知F1,F2是椭圆C:

0)的左、右焦点,A是C的左顶点,点P在过A且斜率为的直线上,△PF1F2为等腰三角形,∠F1F2P=120°

,则C的离心率为(  )

解析 依题意易知|PF2|=|F1F2|=2c,且P在第一象限内,由∠F1F2P=120°

可得P点的坐标为(2c,c).

又因为kAP=,即=,所以a=4c,e=,故选D.

条件探究 将举例说明2中点P满足的条件改为“椭圆C上存在点P,使∠F1PF2=90°

”,求C的离心率的取值范围.

解 解法一:

椭圆上存在点P使∠F1PF2=90°

⇔以原点O为圆心,以c为半径的圆与椭圆有公共点⇔b≤c,如图,由b≤c,得a2-c2≤c2,即a2≤2c2,解得e=≥,又0<

e<

1,故椭圆C的离心率的取值范围是.

设P(x0,y0)为椭圆上一点,则+=1.

=(-c-x0,-y0),=(c-x0,-y0),

若∠F1PF2=90°

,则·

=x+y-c2=0.

∴x+b2=c2,∴x=.

∵0≤x≤a2,∴0≤≤1.

∴b2≤c2,∴a2≤2c2,∴≤e<

1.

1.利用椭圆几何性质的注意点及技巧

(1)注意椭圆几何性质中的不等关系

在求与椭圆有关的一些范围问题时,经常用到x,y的范围,离心率的范围等不等关系.

(2)利用椭圆几何性质的技巧

求解与椭圆几何性质有关的问题时,理清顶点、焦点、长轴、短轴等基本量的内在联系.

2.求椭圆离心率的方法

(1)直接求出a,c,利用离心率公式e=求解.

(2)由a与b的关系求离心率,利用变形公式e=求解.如举例说明2.

(3)由椭圆的定义求离心率.e==,而2a是椭圆上任意一点到两焦点的距离之和,2c是焦距,从而与焦点三角形联系起来.                   

1.(2018·

长沙模拟)椭圆E的焦点在x轴上,中心在原点,其短轴上的两个顶点和两个焦点恰为边长是2的正方形的顶点,则椭圆E的标准方程为(  )

A.+=1B.+y2=1

C.+=1D.+=1

答案 C

解析 易知b=c=,故a2=b2+c2=4,从而椭圆E的标准方程为+=1.

2.已知F是椭圆+=1(a>

0)的左焦点,A为右顶点,P是椭圆上的一点,PF⊥x轴,若|PF|=|AF|,则该椭圆的离心率是________.

答案 

解析 根据椭圆几何性质可知|PF|=,|AF|=a+c,所以=(a+c),即4b2=3a2+3ac.又因为b2=a2-c2,所以有4(a2-c2)=3a2+3ac,整理可得4c2+3ac-a2=0,两边同除以a2,得4e2+3e-1=0,所以(4e-1)·

(e+1)=0,由于0<

1,所以e=.

题型 直线与椭圆的综合问题

角度1 椭圆与向量的综合问题

六安舒城中学模拟)设椭圆C:

0)的右焦点为F,过点F的直线l与椭圆C相交于A,B两点,直线l的倾斜角为60°

,=2.则椭圆C的离心率是________.

解析 设A(x1,y1),B(x2,y2),由题意知y1<

0,y2>

0.

直线l的方程为y=(x-c),其中c=.

联立

得(3a2+b2)y2+2b2cy-3b4=0.

解得y1=,y2=.

因为=2,所以-y1=2y2.

即=2·

.

得离心率e==.

角度2 弦长及弦中点问题

2.

(1)斜率为1的直线l与椭圆+y2=1相交于A,B两点,则|AB|的最大值为(  )

A.2B.

(2)直线y=x+m被椭圆2x2+y2=2截得的线段的中点的横坐标为,则中点的纵坐标为________.

答案 

(1)C 

(2)-

解析 

(1)设A,B两点的坐标分别为(x1,y1),(x2,y2),直线l的方程为y=x+t,

消去y,得5x2+8tx+4(t2-1)=0,

则x1+x2=-t,x1x2=.

Δ=(8t)2-4×

4(t2-1)>

0,得t2<

5.

∴|AB|=|x1-x2|

=·

当t=0时,|AB|max=.

(2)解法一:

由消去y并整理得3x2+2mx+m2-2=0,设线段的两端点分别为A(x1,y1),B(x2,y2),则x1+x2=-,

∴-=,解得m=-.

由截得的线段的中点在直线y=x-上,得中点的纵坐标y=-=-.

设线段的两端点分别为A(x1,y1),B(x2,y2),

则2x+y=2,2x+y=2.两式相减得

2(x1-x2)(x1+x2)+(y1-y2)(y1+y2)=0.

把=1,x1+x2=代入上式,得=-,则中点的纵坐标为-.

角度3 直线与椭圆的位置关系及综合问题

3.若直线y=kx+1与椭圆+=1总有公共点,则m的取值范围是(  )

A.m>

1B.m>

C.0<

5且m≠1D.m≥1且m≠5

解析 直线y=kx+1恒过定点(0,1),

若直线y=kx+1与椭圆+=1总有公共点,

则点(0,1)在椭圆+=1内部或在椭圆上,

所以≤1,由方程+=1表示椭圆,则m>

0且m≠5,综上知m的取值范围是m≥1且m≠5.

4.(2018·

全国卷Ⅰ)设椭圆C:

+y2=1的右焦点为F,过F的直线l与C交于A,B两点,点M的坐标为(2,0).

(1)当l与x轴垂直时,求直线AM的方程;

(2)设O为坐标原点,证明:

∠OMA=∠OMB.

解 

(1)由已知得F(1,0),直线l的方程为x=1.

由已知可得,点A的坐标为或.

所以直线AM的方程为y=-x+或y=x-.

(2)证明:

当l与x轴重合时,∠OMA=∠OMB=0°

当l与x轴垂直时,OM为AB的垂直平分线,所以∠OMA=∠OMB.

当l与x轴不重合也不垂直时,设l的方程为y=k(x-1)(k≠0),A(x1,y1),B(x2,y2),

则x1<

,x2<

,直线MA,MB的斜率之和为kMA+kMB=+.

由y1=kx1-k,y2=kx2-k,得

kMA+kMB=.

将y=k(x-1)代入+y2=1,得(2k2+1)x2-4k2x+2k2-2=0.

所以x1+x2=,x1x2=.

则2kx1x2-3k(x1+x2)+4k==0.

从而kMA+kMB=0,故直线MA,MB的倾斜角互补,

所以∠OMA=∠OMB.

综上,∠OMA=∠OMB.

1.解决椭圆中与向量有关问题的方法

(1)将向量条件坐标表示,再利用函数、方程知识建立数量关系.

(2)利用向量关系转化成相关的等量关系.

(3)利用向量运算的几何意义转化成图形中位置关系解题.

2.弦中点问题的解决策略

(1)根与系数的关系:

直线与椭圆方程联立、消元,利用根与系数的关系表示中点坐标.

(2)点差法:

利用弦两端点适合椭圆方程,作差构造中点、斜率的关系.

3.求解直线与椭圆相交的弦长问题的步骤

(1)设直线Ax+By+C=0与椭圆mx2+ny2=1(m>

0,m≠n)的两个交点坐标分别为E(x1,y1),F(x2,y2).

(2)把直线方程与椭圆方程联立方程组,消元得到一个一元二次方程.

(3)利用根与系数的关系,得到x1+x2与x1x2或y1y2与y1+y2.

(4)把与E,F有关要求的量(如弦长|EF|、直线与椭圆相关的图形面积等)用E,F的坐标表示出来,并变形为只含x1+x2与x1x2(或y1+y2与y1y2)的形式.

(5)将(3)中所得的含有参数的式子等量代入(4)中,得到含参数的代数式,经过其他运算得到化简结果.

4.重要结论

(1)椭圆中最短的焦点弦为通径,长度为.

(2)设斜率为k(k≠0)的直线l与椭圆C相交于A,B两点,A(x1,y1),B(x2,y2),则|AB|=|x1-x2|=·

或|AB|=·

|y1-y2|=·

.                   

1.已知椭圆4x2+y2=1及直线y=x+m.

(1)当直线和椭圆有公共点时,求实数m的取值范围;

(2)求被椭圆截得的最长弦所在的直线方程.

解 

(1)由得5x2+2mx+m2-1=0,

因为直线与椭圆有公共点,

所以Δ=4m2-20(m2-1)≥0,解得-≤m≤.

(2)设直线与椭圆交于A(x1,y1),B(x2,y2)两点,

(1)知,5x2+2mx+m2-1=0,

所以x1+x2=-,x1x2=(m2-1),

所以|AB|==

==

=.

所以当m=0时,|AB|最大,即被椭圆截得的弦最长,此时直线方程为y=x.

沈阳质检)已知P点坐标为(0,-2),点A,B分别为椭圆E:

0)的左、右顶点,直线BP交E于点Q,△ABP是等腰直角三角形,且=.

(1)求椭圆E的方程;

(2)设过点P的动直线l与E相交于M,N两点,当坐标原点O位于以MN为直径的圆外时,求直线l斜率的取值范围.

解 

(1)由△ABP是等腰直角三角形,得a=2,B(2,0).

设Q(x0,y0),则由=,得

代入椭圆方程得b2=1,

所以椭圆E的方程为+y2=1.

(2)依题意得,直线l的斜率存在,方程设为y=kx-2.

消去y并整理得(1+4k2)x2-16kx+12=0.(*)

因直线l与E有两个交点,即方程(*)有不等的两实根,

故Δ=(-16k)2-48(1+4k2)>

0,解得k2>

设M(x1,y1),N(x2,y2),

由根与系数的关系得

因坐标原点O位于以MN为直径的圆外,

所以·

>

0,即x1x2+y1y2>

0,

又由x1x2+y1y2=x1x2+(kx1-2)(kx2-2)

=(1+k2)x1x2-2k(x1+x2)+4

=(1+k2)·

-2k·

+4>

解得k2<

4,综上可得<

k2<

4,

则<

k<

2或-2<

-.

则满足条件的斜率k的取值范围为∪.

高频考点 求椭圆的离心率问题

考点分析 离心率是椭圆的重要几何性质,是高考重点考查的一个知识点,这类问题一般有两类:

一类是根据一定的条件求椭圆的离心率;

另一类是根据一定的条件求离心率的取值范围,无论是哪类问题,其难点都是建立关于a,b,c的关系式(等式或不等式),并且最后要把其中的b用a,c表示,转化为关于离心率e的关系式,这是化解有关椭圆的离心率问题难点的根本方法.

[典例1] 从椭圆+=1(a>

0)上一点P向x轴作垂线,垂足恰为左焦点F1,A是椭圆与x轴正半轴的交点,B是椭圆与y轴正半轴的交点,且AB∥OP(O是坐标原点),则该椭圆的离心率是(  )

解析 由题意可设P(-c,y0)(c为半焦距),kOP=-,kAB=-,由于OP∥AB,∴-=-,y0=,把P代入椭圆方程得+=1,即2=,∴e==.

[典例2] (2018·

芜湖模拟)已知椭圆E:

0)的右焦点为F(c,0).圆C:

(x-c)2+y2=1上所有点都在椭圆E的内部,过椭圆上任一点M作圆C的两条切线,A,B为切点,若∠AMB=θ,θ∈,则椭圆C的离心率为(  )

A.2-B.3-2

C.-D.-1

解析 圆C:

(x-c)2+y2=1的圆心为右焦点F(c,0),半径为1,

(1)当M位于椭圆的右顶点(a,0)时,|MF|取得最小值a-c,此时|MA|取得最小值,

即有∠AMB=,sin=,可得a-c=,①

(2)当M位于椭圆的左顶点(-a,0),|MF|取得最大值a+c.此时|MA|取得最大值,即有∠AMB=,

sin=,可得a+c=2,②

由①②解得a=1+,c=1-,

则e===3-2.

第2讲 双曲线

[考纲解读] 1.掌握双曲线的定义、几何图形和标准方程,知道其简单的几何性质(范围、对称性、顶点、离心率、渐近线).(重点)

2.掌握直线与双曲线位置关系的判断,并能求解与双曲线有关的简单问题,理解数形结合思想在解决问题中的应用.(难点)

[考向预测] 从近三年高考情况来看,本讲是高考中的热点.预测2020年高考会考查:

①双曲线定义的应用与标准方程的求解;

②渐近线方程与离心率的求解.试题以客观题的形式呈现,难度不大,以中档题为主.

对应学生用书P149

1.双曲线的定义

平面内与两个定点F1,F2(|F1F2|=2c>

0)的距离的差的绝对值为常数(小于|F1F2|且不等于零)的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.

集合P={M|||MF1|-|MF2||=2a},|F1F2|=2c,其中a,c为常数且a>

0,c>

0:

(1)当a<

c时,P点的轨迹是双曲线;

(2)当a=c时,P点的轨迹是两条射线;

(3)当a>

c时,P点不存在.

2.双曲线的标准方程和几何性质

3.必记结论

(1)焦点到渐近线的距离为b.

(2)等轴双曲线:

实轴长和虚轴长相等的双曲线叫等轴双曲线,其方程可写作:

x2-y2=λ(λ≠0).

(3)等轴双曲线⇔离心率e=⇔两条渐近线y=±

x相互垂直.

(1)平面内到点F1(0,4),F2(0,-4)距离之差等于6的点的轨迹是双曲线.(  )

(2)双曲线方程-

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 自然科学 > 物理

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1