高考数学真题导数专题及答案.doc

上传人:b****3 文档编号:1865891 上传时间:2022-10-24 格式:DOC 页数:20 大小:230KB
下载 相关 举报
高考数学真题导数专题及答案.doc_第1页
第1页 / 共20页
高考数学真题导数专题及答案.doc_第2页
第2页 / 共20页
高考数学真题导数专题及答案.doc_第3页
第3页 / 共20页
高考数学真题导数专题及答案.doc_第4页
第4页 / 共20页
高考数学真题导数专题及答案.doc_第5页
第5页 / 共20页
点击查看更多>>
下载资源
资源描述

高考数学真题导数专题及答案.doc

《高考数学真题导数专题及答案.doc》由会员分享,可在线阅读,更多相关《高考数学真题导数专题及答案.doc(20页珍藏版)》请在冰豆网上搜索。

高考数学真题导数专题及答案.doc

2017年高考真题导数专题

 

一.解答题(共12小题)

1.已知函数f(x)=ae2x+(a﹣2)ex﹣x.

(1)讨论f(x)的单调性;

(2)若f(x)有两个零点,求a的取值范围.

2.已知函数f(x)=ax2﹣ax﹣xlnx,且f(x)≥0.

(1)求a;

(2)证明:

f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2.

3.已知函数f(x)=x﹣1﹣alnx.

(1)若f(x)≥0,求a的值;

(2)设m为整数,且对于任意正整数n,(1+)(1+)…(1+)<m,求m的最小值.

4.已知函数f(x)=x3+ax2+bx+1(a>0,b∈R)有极值,且导函数f′(x)的极值点是f(x)的零点.(极值点是指函数取极值时对应的自变量的值)

(1)求b关于a的函数关系式,并写出定义域;

(2)证明:

b2>3a;

(3)若f(x),f′(x)这两个函数的所有极值之和不小于﹣,求a的取值范围.

5.设函数f(x)=(1﹣x2)ex.

(1)讨论f(x)的单调性;

(2)当x≥0时,f(x)≤ax+1,求a的取值范围.

6.已知函数f(x)=(x﹣)e﹣x(x≥).

(1)求f(x)的导函数;

(2)求f(x)在区间[,+∞)上的取值范围.

7.已知函数f(x)=x2+2cosx,g(x)=ex(cosx﹣sinx+2x﹣2),其中e≈2.17828…是自然对数的底数.

(Ⅰ)求曲线y=f(x)在点(π,f(π))处的切线方程;

(Ⅱ)令h(x)=g(x)﹣af(x)(a∈R),讨论h(x)的单调性并判断有无极值,有极值时求出极值.

8.已知函数f(x)=excosx﹣x.

(1)求曲线y=f(x)在点(0,f(0))处的切线方程;

(2)求函数f(x)在区间[0,]上的最大值和最小值.

9.设a∈Z,已知定义在R上的函数f(x)=2x4+3x3﹣3x2﹣6x+a在区间(1,2)内有一个零点x0,g(x)为f(x)的导函数.

(Ⅰ)求g(x)的单调区间;

(Ⅱ)设m∈[1,x0)∪(x0,2],函数h(x)=g(x)(m﹣x0)﹣f(m),求证:

h(m)h(x0)<0;

(Ⅲ)求证:

存在大于0的常数A,使得对于任意的正整数p,q,且∈[1,x0)∪(x0,2],满足|﹣x0|≥.

10.已知函数f(x)=x3﹣ax2,a∈R,

(1)当a=2时,求曲线y=f(x)在点(3,f(3))处的切线方程;

(2)设函数g(x)=f(x)+(x﹣a)cosx﹣sinx,讨论g(x)的单调性并判断有无极值,有极值时求出极值.

11.设a,b∈R,|a|≤1.已知函数f(x)=x3﹣6x2﹣3a(a﹣4)x+b,g(x)=exf(x).

(Ⅰ)求f(x)的单调区间;

(Ⅱ)已知函数y=g(x)和y=ex的图象在公共点(x0,y0)处有相同的切线,

(i)求证:

f(x)在x=x0处的导数等于0;

(ii)若关于x的不等式g(x)≤ex在区间[x0﹣1,x0+1]上恒成立,求b的取值范围.

12.已知函数f(x)=ex(ex﹣a)﹣a2x.

(1)讨论f(x)的单调性;

(2)若f(x)≥0,求a的取值范围.

 

2017年高考真题导数专题

参考答案与试题解析

 

一.解答题(共12小题)

1.(2017•新课标Ⅰ)已知函数f(x)=ae2x+(a﹣2)ex﹣x.

(1)讨论f(x)的单调性;

(2)若f(x)有两个零点,求a的取值范围.

【解答】解:

(1)由f(x)=ae2x+(a﹣2)ex﹣x,求导f′(x)=2ae2x+(a﹣2)ex﹣1,

当a=0时,f′(x)=﹣2ex﹣1<0,

∴当x∈R,f(x)单调递减,

当a>0时,f′(x)=(2ex+1)(aex﹣1)=2a(ex+)(ex﹣),

令f′(x)=0,解得:

x=ln,

当f′(x)>0,解得:

x>ln,

当f′(x)<0,解得:

x<ln,

∴x∈(﹣∞,ln)时,f(x)单调递减,x∈(ln,+∞)单调递增;

当a<0时,f′(x)=2a(ex+)(ex﹣)<0,恒成立,

∴当x∈R,f(x)单调递减,

综上可知:

当a≤0时,f(x)在R单调减函数,

当a>0时,f(x)在(﹣∞,ln)是减函数,在(ln,+∞)是增函数;

(2)①若a≤0时,由

(1)可知:

f(x)最多有一个零点,

当a>0时,f(x)=ae2x+(a﹣2)ex﹣x,

当x→﹣∞时,e2x→0,ex→0,

∴当x→﹣∞时,f(x)→+∞,

当x→∞,e2x→+∞,且远远大于ex和x,

∴当x→∞,f(x)→+∞,

∴函数有两个零点,f(x)的最小值小于0即可,

由f(x)在(﹣∞,ln)是减函数,在(ln,+∞)是增函数,

∴f(x)min=f(ln)=a×()+(a﹣2)×﹣ln<0,

∴1﹣﹣ln<0,即ln+﹣1>0,

设t=,则g(t)=lnt+t﹣1,(t>0),

求导g′(t)=+1,由g

(1)=0,

∴t=>1,解得:

0<a<1,

∴a的取值范围(0,1).

方法二:

(1)由f(x)=ae2x+(a﹣2)ex﹣x,求导f′(x)=2ae2x+(a﹣2)ex﹣1,

当a=0时,f′(x)=2ex﹣1<0,

∴当x∈R,f(x)单调递减,

当a>0时,f′(x)=(2ex+1)(aex﹣1)=2a(ex+)(ex﹣),

令f′(x)=0,解得:

x=﹣lna,

当f′(x)>0,解得:

x>﹣lna,

当f′(x)<0,解得:

x<﹣lna,

∴x∈(﹣∞,﹣lna)时,f(x)单调递减,x∈(﹣lna,+∞)单调递增;

当a<0时,f′(x)=2a(ex+)(ex﹣)<0,恒成立,

∴当x∈R,f(x)单调递减,

综上可知:

当a≤0时,f(x)在R单调减函数,

当a>0时,f(x)在(﹣∞,﹣lna)是减函数,在(﹣lna,+∞)是增函数;

(2)①若a≤0时,由

(1)可知:

f(x)最多有一个零点,

②当a>0时,由

(1)可知:

当x=﹣lna时,f(x)取得最小值,f(x)min=f(﹣lna)=1﹣﹣ln,

当a=1,时,f(﹣lna)=0,故f(x)只有一个零点,

当a∈(1,+∞)时,由1﹣﹣ln>0,即f(﹣lna)>0,

故f(x)没有零点,

当a∈(0,1)时,1﹣﹣ln<0,f(﹣lna)<0,

由f(﹣2)=ae﹣4+(a﹣2)e﹣2+2>﹣2e﹣2+2>0,

故f(x)在(﹣∞,﹣lna)有一个零点,

假设存在正整数n0,满足n0>ln(﹣1),则f(n0)=(a+a﹣2)﹣n0>﹣n0>﹣n0>0,

由ln(﹣1)>﹣lna,

因此在(﹣lna,+∞)有一个零点.

∴a的取值范围(0,1).

 

2.(2017•新课标Ⅱ)已知函数f(x)=ax2﹣ax﹣xlnx,且f(x)≥0.

(1)求a;

(2)证明:

f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2.

【解答】

(1)解:

因为f(x)=ax2﹣ax﹣xlnx=x(ax﹣a﹣lnx)(x>0),

则f(x)≥0等价于h(x)=ax﹣a﹣lnx≥0,求导可知h′(x)=a﹣.

则当a≤0时h′(x)<0,即y=h(x)在(0,+∞)上单调递减,

所以当x0>1时,h(x0)<h

(1)=0,矛盾,故a>0.

因为当0<x<时h′(x)<0、当x>时h′(x)>0,

所以h(x)min=h(),

又因为h

(1)=a﹣a﹣ln1=0,

所以=1,解得a=1;

(2)证明:

(1)可知f(x)=x2﹣x﹣xlnx,f′(x)=2x﹣2﹣lnx,

令f′(x)=0,可得2x﹣2﹣lnx=0,记t(x)=2x﹣2﹣lnx,则t′(x)=2﹣,

令t′(x)=0,解得:

x=,

所以t(x)在区间(0,)上单调递减,在(,+∞)上单调递增,

所以t(x)min=t()=ln2﹣1<0,从而t(x)=0有解,即f′(x)=0存在两根x0,x2,

且不妨设f′(x)在(0,x0)上为正、在(x0,x2)上为负、在(x2,+∞)上为正,

所以f(x)必存在唯一极大值点x0,且2x0﹣2﹣lnx0=0,

所以f(x0)=﹣x0﹣x0lnx0=﹣x0+2x0﹣2=x0﹣,

由x0<可知f(x0)<(x0﹣)max=﹣+=;

由f′()<0可知x0<<,

所以f(x)在(0,x0)上单调递增,在(x0,)上单调递减,

所以f(x0)>f()=;

综上所述,f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2.

 

3.(2017•新课标Ⅲ)已知函数f(x)=x﹣1﹣alnx.

(1)若f(x)≥0,求a的值;

(2)设m为整数,且对于任意正整数n,(1+)(1+)…(1+)<m,求m的最小值.

【解答】解:

(1)因为函数f(x)=x﹣1﹣alnx,x>0,

所以f′(x)=1﹣=,且f

(1)=0.

所以当a≤0时f′(x)>0恒成立,此时y=f(x)在(0,+∞)上单调递增,这与f(x)≥0矛盾;

当a>0时令f′(x)=0,解得x=a,

所以y=f(x)在(0,a)上单调递减,在(a,+∞)上单调递增,即f(x)min=f(a),

又因为f(x)min=f(a)≥0,

所以a=1;

(2)由

(1)可知当a=1时f(x)=x﹣1﹣lnx≥0,即lnx≤x﹣1,

所以ln(x+1)≤x当且仅当x=0时取等号,

所以ln(1+)<,k∈N*.

一方面,ln(1+)+ln(1+)+…+ln(1+)<++…+=1﹣<1,

即(1+)(1+)…(1+)<e;

另一方面,(1+)(1+)…(1+)>(1+)(1+)(1+)=>2;

从而当n≥3时,(1+)(1+)…(1+)∈(2,e),

因为m为整数,且对于任意正整数n,(1+)(1+)…(1+)<m成立,

所以m的最小值为3.

 

4.(2017•江苏)已知函数f(x)=x3+ax2+bx+1(a>0,b∈R)有极值,且导函数f′(x)的极值点是f(x)的零点.(极值点是指函数取极值时对应的自变量的值)

(1)求b关于a的函数关系式,并写出定义域;

(2)证明:

b2>3a;

(3)若f(x),f′(x)这两个函数的所有极值之和不小于﹣,求a的取值范围.

【解答】

(1)解:

因为f(x)=x3+ax2+bx+1,

所以g(x)=f′(x)=3x2+2ax+b,g′(x)=6x+2a,

令g′(x)=0,解得x=﹣.

由于当x>﹣时g′(x)>0,g(x)=f′(x)单调递增;当x<﹣时g′(x)<0,g(x)=f′(x)单调递减;

所以f′(x)的极小值点为x=﹣,

由于导函数f′(x)的极值点是原函数f(x)的零点,

所以f(﹣)=0,即﹣+﹣+1=0,

所以b=+(a>0).

因为f(x)=x3+ax2+bx+1(a>0,b∈R)有极值,

所以f′(x)=3x2+2ax+b=0的实根,

所以4a2﹣12b≥0,即a2﹣+≥0,解得a≥3,

所以b=+(a≥3).

(2)证明:

(1)可知h(a)=b2﹣3a=﹣+=(4a3﹣27)(a3﹣27),

由于a>3,所以h(a)>0,即b2>3a;

(3)解:

(1)可知f′(x)的极小值为f′(﹣)=b﹣,

设x1,x2是y=f(x)的两个极值点,则x1+x2=,x1x2=,

所以f(x1)+f(x2)=++a(+)+b(x1+x2)+2

=(x1+x2)[(x1+x2)2﹣3x1x2]+a[(x1+x2)2﹣2x1x2]+b(x1+x2)+2

=﹣+2,

又因为f(x),f′(x)这两个函数的所有极值之和不小于﹣,

所以b﹣+﹣+2=﹣≥﹣,

因为a>3,所以2a3﹣63a

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 工程科技 > 信息与通信

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1