省考C语言程序设计题Word文件下载.docx

上传人:b****6 文档编号:18627029 上传时间:2022-12-29 格式:DOCX 页数:24 大小:25.27KB
下载 相关 举报
省考C语言程序设计题Word文件下载.docx_第1页
第1页 / 共24页
省考C语言程序设计题Word文件下载.docx_第2页
第2页 / 共24页
省考C语言程序设计题Word文件下载.docx_第3页
第3页 / 共24页
省考C语言程序设计题Word文件下载.docx_第4页
第4页 / 共24页
省考C语言程序设计题Word文件下载.docx_第5页
第5页 / 共24页
点击查看更多>>
下载资源
资源描述

省考C语言程序设计题Word文件下载.docx

《省考C语言程序设计题Word文件下载.docx》由会员分享,可在线阅读,更多相关《省考C语言程序设计题Word文件下载.docx(24页珍藏版)》请在冰豆网上搜索。

省考C语言程序设计题Word文件下载.docx

,n);

2.[300,800]范围内同时满足以下两个条件的十进制数.⑴其个位数字与十位数字之和除以10所得的余数是百位数字;

⑵该数是素数;

求满足上述条件的最大的三位十进制数。

761

3.除1和它本身外,不能被其它整数整除的正整数称为素数(注:

1不是素数,2是素数)。

若两素数之差为2,则称两素数为双胞胎数,问[31,601]之间有多少对双胞胎数。

22

{inti,n=0;

for(i=31;

=599;

if(prime(i)&

prime(i+2))n++;

%d\n"

4.数学家哥德巴赫曾猜测:

任何大于6的偶数都可以分解成两个素数(素数对)的和。

但有些偶数可以分解成多种素数对的和,如:

10=3+7,10=5+5,即10可以分解成两种不同的素数对。

试求6744可以分解成多少种不同的素数对(注:

A+B与B+A认为是相同素数对)144

{inti,n;

n=0;

5.两个素数之差为2,则称这两个素数为双胞胎数。

求出[200,1000]之间的最大一对双胞胎数的和。

1764

6.一个素数(设为p)依次从最高位去掉一位,二位,三位,……,若得到的各数仍都是素数(注:

除1和它本身外,不能被其它整数整除的正整数称为素数,1不是素数,2是素数),且数p的各位数字均不为零,则称该数p为逆向超级素数。

例如,617,17,7都是素数,因此617是逆向超级素数,尽管503,03,3都是素数,但它不是逆向超级素数,因为它包含有零。

试求[100,999]之内的所有逆向超级素数的个数。

39

7.德国数学家哥德巴赫曾猜测:

试求1234可以分解成多少种不同的素数对(注:

A+B与B+A认为是相同素数对)25

8.求[100,900]之间相差为12的素数对(注:

要求素数对的两个素数均在该范围内)的个数。

50

=900-12;

prime(i+12))n++;

9.一个素数(设为p)依次从最高位去掉一位,二位,三位,……,若得到的各数仍都是素数(注:

1不是素数),且数p的各位数字均不为零,则称该数p为逆向超级素数。

例如,617,17,7都是素数,因此617是逆向超级素数,但尽管503,03,3都是素数,但它不是逆向超级素数,因为它包含有零。

试求[100,999]之内的所有逆向超级素数的和。

21645

{inti,k;

if(x%i==0)break;

}

{inti,s=0;

intprime(intx);

prime(i%100)&

prime(i%10))

if((i%100/10!

=0)&

(i%10!

=1))s=s+i;

s);

10.一个素数(设为p)依次从最高位去掉一位,二位,三位,……,若得到的各数仍都是素数(注:

1不是素数,2是素数),且数p的各位数字均不为零,则称该数p为逆向超级素数。

试求[100,999]之内的所有逆向超级素数从大到小数的第10个素数是多少?

797

11.一个自然数是素数,且它的数字位置经过任意对换后仍为素数,则称为绝对素数。

如13,试求所有两位绝对素数的和。

429

12.在[200,900]范围内同时满足以下两个条件的十进制数:

⑴其个位数字与十位数字之和除以10所得的余数是百位数字;

⑵该数是素数;

问有多少个这样的数?

14

13.一个素数,依次从个位开始去掉一位,二位.....,所得的各数仍然是素数,称为超级素数。

求[100,999]之内超级素数的个数。

for(i=200;

prime(i/100)&

prime(i/10))

s++;

%d\n"

si);

14.若两个连续的自然数的乘积减1后是素数,则称此两个连续自然数为友数对,该素数称为友素数。

例如,由于8*9-1=71,因此,8与9是友数对,71是友素数。

求[100,200]之间的第10个友素数对所对应的友素数的值(按由小到大排列)。

17291

=200;

if(prime(i*(i+1)-1))

{s++;

if(s==10)break;

i*(i+1)-1);

15.求[2,400]中相差为10的相邻素数对的对数。

5

16.若两个连续的自然数的乘积减1后是素数,则称此两个连续自然数为友数对,该素数称为友素数。

求[50,150]之间的友数对的数目。

38

17.若两个自然连续数乘积减1后是素数,则称此两个自然连续数为友数对,该素数称为友素数,例:

2*3-1=5,因此2与3是友数对,5是友素数,求[40,119]之间友素数对的数目。

30

18.梅森尼数是指能使2^n-1为素数的数n,求[1,21]范围内有多少个梅森尼数?

7

intprime(longx)

{longk;

longi;

if(i<

for(i=1;

=21;

if(prime((long)(pow(2,i))-1)&

((long)(pow(2,i)-1)!

=1)&

=0))

{s++;

\nTotalis:

%d,%ld\n"

s,(long)(pow(2,i))-1);

2.取数字

19.[300,800]范围内同时满足以下两个条件的十进制数.⑴其个位数字与十位数字之和除以10所得的余数是百位数字;

20.求符合下列条件的四位完全平方数(某个正整数A是另一个正整数B的平方,则称A为完全平方数),它的千位数字与十位数字之和等于百位数字与个位数字之积,例如,3136=562,且3+3=1*6故3136是所求的四位完全平方数.求其中最大的一个数。

7921

21.设某四位数的千位数字平方与十位数字的平方之和等于百位数字的立方与个位数字的立方之和,例如,对于四位数:

3201,3^2+0^2=2^3+1^3,试问所有这样的四位数之和是多少?

97993

{longi,k=0;

inta,b,c,d;

for(i=1000;

=9999;

{a=i/1000;

b=i%1000/100;

c=i%100/10;

d=i%10;

if(a*a+c*c==b*b*b+d*d*d)k=k+i;

okThenumis:

%ld\n"

k);

22.设某四位数的千位数字与十位数字的和等于百位数字与个位数字的积,例如,对于四位数:

9512,9+1=5*2,试问所有这样的四位数之和是多少?

1078289

23.有一个三位数满足下列条件:

(1)此三位数的三位数字各不相同;

(2)此三位数等于它的各位数字的立方和。

试求所有这样的三位数之和。

1301

24.求[1,999]之间能被3整除,且至少有一位数字是5的所有正整数的个数。

91

{inti,k=0;

inta,b,c;

if((i%3==0)&

(a==5||b==5||c==5))

k=k+1;

Thenumis:

25.有一个三位数满足下列条件:

试求所有这样的三位数中最大的一个是多少?

407

{inti,max=0;

if((a*a*a+b*b*b+c*c*c==i)&

(a!

=b&

b!

=c&

a!

=c))

if(max<

i)max=i;

max);

26.有一个三位数满足下列条件:

试求这种三位数共有多少个?

4

27.求五位数各位数字的平方和为100的最大的五位数。

94111

28.所谓“水仙花数”是指一个三位数,其各位数字的三次方之和等于该数本身,例如:

153=1^3+3^3+5^3,故153是水仙花数,求[100,999]之间所有水仙花数之和。

if((a*a*a+b*b*b+c*c*c==i))

k=k+i;

29.设某四位数的各位数字的平方和等于100,问共有多少个这种四位数?

49

30.回文数是指正读和反读都一样的正整数。

例如3773是回文数。

求出[1000,9999]以内的所有回文数的个数。

90

if(d*1000+c*100+b*10+a==i)k=k+1;

3.分硬币

31.把一张一元钞票,换成一分、二分和五分硬币,每种至少8枚,问有多少种方案?

80

stdio.h>

{inti,j,k,s=0;

for(i=8;

=50;

for(j=8;

j<

j++)

for(k=8;

k<

=20;

k++)

if(i+2*j+5*k==100)s=s+1;

32.50元的整币兑换成5元、2元和1元币值(三种币值均有、缺少一种或两种都计算在内)的方法有多少种。

146

33.50元的整币兑换成5元、2元和1元币值(要求三种币值均有)的方法有多少种。

106

34.马克思曾经做过这样一道趣味数学题:

有30个人在一家小饭店里用餐,其中有男人、女人和小孩,每个男人花了3先令,每个女人花了2先令,每个小孩花了1先令,共花去50先令。

如果要求男人、女人和小孩都有人参与,试求有多少种方案分配男人、女人和小孩的人数。

9

for(a=1;

a<

=30;

a++)

for(b=1;

b<

b++)

if((a*3+b*2+(30-a-b)==50)&

(a+b<

30))k++;

4.勾股、弦数

35.A,B,C是三个小于或等于100正整数,当满足1/A^2+1/B^2=1/C^2关系时,称为倒勾股数。

求130<

A+B+C<

150且A>

B>

C的倒勾股数有多少组。

1

main()/*p2_2*/

{inti,a,b,c,n=0;

for(c=1;

c<

c++)

for(b=c+1;

=100;

for(a=b+1;

{i=a+b+c;

100&

150&

(1.0/(a*a)+1.0/(b*b)==1.0/(c*c)))

{n++;

%d,%d,%d:

"

a,b,c);

nis:

36.倒勾股数是满足公式:

1/A^2+1/B^2=1/C^2的一组正整数(A,B,C),例如,(156,65,60)是倒勾股数,因为:

1/156^2+1/65^2=1/60^2。

假定A>

C,求A,B,C之和小于100的倒勾股数有多少组?

2

37.勾股弦数是满足公式:

A^2+B^2=C^2(假定A<

B<

C)的一组正整数(A,B,C),例如,(3,4,5)是勾股弦数,因为:

3^2+4^2=5^2。

求A,B均小于25且A+B+C<

=100的勾股弦数的个数。

11

38.倒勾股数是满足公式:

C,求A,B,C均小于或等于100的倒勾股数有多少组?

4

39.勾股弦数是满足公式:

求A,B,C均小于或等于100的勾股弦数中A+B+C的最大值。

240

{intmax=0,a,b,c;

for(b=a+1;

for(c=b+1;

{if(a*a+b*b==c*c)

{if(max<

a+b+c)max=a+b+c;

oknis:

40若某整数平方等于某两个正整数平方之和的正整数称为弦数。

例如:

由于3^2+4^2=5^2,则5为弦数,求[100,200]之间弦数的个数。

55

{inti,j,k,n=0,m;

for(k=100;

{m=1;

k;

for(j=i+1;

if(i*i+j*j==k*k&

m==1)

{n++;

m=0;

}printf("

41若某正整数平方等于某两个正整数平方之和,称该正整数为弦数。

由于3^2+4^2=5^2,则5为弦数,求[131,200]之间最小的弦数。

135

{inti,j,k,min=200;

for(k=131;

for(j=1;

for(i=j+1;

if(i*i+j*j==k*k)

{if(min>

k)min=k;

minis:

min);

5.完数因子

42求在[10,1000]之间的所有完数之和。

各真因子之和(不包括自身)等于其本身的正整数称为完数。

6=1+2+3,6是完数。

524

intwan(intx)

{inti,s=1;

=x-1;

if(x%i==0)s=s+i;

if(s==x)return

(1);

for(i=10;

=1000;

if(wan(i))s=s+i;

43一个数如果恰好等于它的所有真因子之和,这个数就称为“完数”。

例如,6的真因子为1,2,3,而6=1+2+3,因此,6是“完数”。

求[1,1000]之间的最大完数。

496

{inti;

i>

=1;

i--)

if(wan(i))break;

i);

44一个数如果恰好等于它的所有真因子之和,这个数就称为“完数”。

例如,6的真因子为1,2,3,而6=1+2+3,因此,6是“完数”。

求[1,1000]之间的第二大完数。

28

45一个数如果恰好等于它的所有真因子之和,这个数就称为“完数”。

求1000以内的所有完数之和。

530

46求[200,300]之间有奇数个不同因子的最大的整数(在计算因子个数时,包括该数本身)。

289

47求[200,300]之间第二大有奇数个不同因子的整数(在计算因子个数时,包括该数本身)。

256

{intx,k=0,i,s;

for(x=300;

x>

x--)

{s=0;

=x;

if(x%i==0)s=s+1;

if(s%2==1)k++;

if(k==2)break;

x);

48已知24有8个正整数因子(即:

1,2,3,4,6,8,12,24),而24正好能被其因子数8整除,求正整数[10,100]之间有多少个正整数能被其因子的个数整除。

12

for(x=10;

x<

x++)

if(x%s==0)k++;

6.(数列)四舍五入

49当m的值为50时,计算下列公式的值:

T=1-1/2-1/3-1/4-…-1/m

要求:

按四舍五入的方式精确到小数点后第四位。

-2.4992

50当m的值为50时,计算下列公式之值:

t=1+1/2^2+1/3^2+…+1/m^2

(按四舍五入的方式精确到小数点后第四位)。

1.6251

{intm;

floatt=0;

for(m=1;

m<

m++)

t=t+1.0/(m*m);

tis:

%f"

t);

51当n=100时,计算S=(1-1/2)+(1/3-1/4)+……+(1/(2n-1)-1/(2n))的值。

.

按四舍五入的方式精确到小数点后第三位。

0.691

52当n的值为25时,计算下列公式的值:

s=1+1/1!

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 工作范文 > 演讲主持

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1