深圳市中考数学试题与答案文档格式.docx
《深圳市中考数学试题与答案文档格式.docx》由会员分享,可在线阅读,更多相关《深圳市中考数学试题与答案文档格式.docx(18页珍藏版)》请在冰豆网上搜索。
○S个结论中,正确的有(43BEF⊿5、1A
2B、3、C
4、D二、填空题:
22?
ba3?
3。
13、因式分解:
。
、在数字141,2,3中任选两个组成一个两位数,则这个两位数能被3整除的概率是
3的倍数.点评:
本题考查了树状图法求概率以及概率公式,注意能被3整除即两位数加起来和为个太阳。
、观察下列图形,它们是按一定规律排列的,依照此规律,第155个图形有
k)x?
y?
0(并延DBA16、如图,已知点在反比例函数为斜边,点DAC的中点,连⊿上,作RTABCx,则的面积为,若⊿轴于点长交yEBCE8k=。
2
三、解答题:
10?
o1)(()2015?
|2?
3|2sin60?
、计算:
。
172
11月读书节,深圳市为统计某学校初三学生读书状况,如下图:
19、
,补全统计图;
,参加调差的总人数为)三本以上的(1x值为
)三本以上的圆心角为(2
万人。
万学生,三本以上有(3)全市有6.7
o,小30C点,测出旗杆A的仰角为的高度,小丽眼睛距地图20、小丽为了测旗杆AB1.5米,小丽站在o60,求旗杆的高度。
米到达点丽向前走了10E,此时的仰角为
3/m21、下表为深圳市居民每月用水收费标准,(单位:
元)。
3
用水量单价
a22?
x
1.1剩余部分a的值;
立方米,公交水费23元,求
(1)某用户用水10
(2)在
(1)的前提下,该用户5月份交水费71元,请问该用户用水多少立方米?
22、如图1,水平放置一个三角板和一个量角器,三角板的边AB和量角器的直径DE在一条直线上,AB?
BC?
6cm,OD?
3cm,开始的时候BD=1cm,现在三角板以2cm/s的速度向右移动。
(1)当B与O重合的时候,求三角板运动的时间;
(2)如图2,当AC与半圆相切时,求AD;
2CE?
CF?
CG,当AB和重合时,求证:
DE(3)如图3
2c?
bxy?
xx),3)C(00A(?
3,D为二次函数的顶点,,点1,关于的二次函数,点经过点23、如图xEDE轴上。
为二次函数的对称轴,在
(1)求抛物线的解析式;
x轴的距离相等,若存在求出点P,若不存在请说明理由;
的距离与到P到AD上是否存在点
(2)DE(3)如图2,DE的左侧抛物线上是否存在点F,使2S=3S,若存在求出点F的坐标,若不存在请EBCFBC⊿⊿说明理由。
4
广东省深圳市2015年中考数学试卷
解析与答案
一、选择题:
1、
考点:
相反数.
分析:
根据只有符号不同的两个数互为相反数,可得一个数的相反数.
解答:
解:
﹣15的相反数是15,
故选:
A.
点评:
本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.
2、
科学记数法—表示较大的数.
n的形式,其中1≤|a|<10,分析:
科学记数法的表示形式为a×
10n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;
当原数的绝对值<1时,n是负数.
8.3.16×
10解答:
将316000000用科学记数法表示为:
故选B.
n的形式,其中1≤|a|<10,n为整点评:
此题考查科学记数法的表示方法.科学记数法的表示形式为a×
10数,表示时关键要正确确定a的值以及n的值.
【答案】B.
3、
同底数幂的除法;
合并同类项;
同底数幂的乘法;
幂的乘方与积的乘方.
根据同底数幂相乘,底数不变指数相加;
同底数幂相除,底数不变指数相减;
幂的乘方,底数不变指数相乘;
合并同类项法则对各选项分析判断即可得解.
2,正确,故本选项错误;
a?
a=a解答:
A、B、2a+a=3a,正确,故本选项错误;
32326×
,故本选项正确;
、C(a)=a=a13134)﹣(﹣﹣,正确,故本选项错误.aD、÷
a=a=a5
故选C.
本题考查了合并同类项,同底数幂的乘法,幂的乘方的性质,同底数幂的除法,熟练掌握运算性质和法则是解题的关键.
4、
中心对称图形;
轴对称图形.
根据中心对称图形的定义旋转180°
后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.
A、∵此图形旋转180°
后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误.
B、∵此图形旋转180°
后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;
C、此图形旋转180°
后不能与原图形重合,此图形不是中心对称图形,是轴对称图形,故此选项错误;
D、∵此图形旋转180°
后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确.
D.
此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.
5、
简单组合体的三视图.
根据从正面看得到的图形是主视图,可得答案.
从正面看第一层是三个小正方形,第二层中间一个小正方形.
本题考查了简单组合体的三视图,从正面看得到的视图是主视图.
6、
众数;
中位数.
首先找出这组数据中出现次数最多的数,则它就是这组数据的众数;
然后把这组数据从小到大排列,则中间的数就是这组数据的中位数,据此解答即可.
∵数据75,80,80,85,90中,80出现的次数最多,出现了2次,
∴这组数据的众数是80;
把数据75,80,80,85,90从小到大排列,可得
75,80,80,85,90,
所以这组数据的中位数是80.
B.
(1)此题主要考查了众数的含义和求法,要熟练掌握,解答此题的关键是要明确:
①一组数据中出现次数最多的数据叫做众数.②求一组数据的众数的方法:
找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.
(2)此题还考查了中位数的含义和求法,要熟练掌握,解答此题的关键是要明确:
将一组数据按照从小到大(或从大到小)的顺序排列,①如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.②如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
7、
在数轴上表示不等式的解集;
解一元一次不等式.
先移项、合并同类项,把x的系数化为1即可.
2x≥x﹣1,
2x﹣x≥﹣1,
x≥﹣1.
本题考查了解一元一次不等式、在数轴上表示不等式的解集.把不等式的解集在数轴上表示出来(>,≥向右画;
<,≤向左画).在表示解集时“≥”,“≤”要用实心圆点表示;
“<”,“>”要用空心圆点表示.
8、
6
二次函数图象与系数的关系.
专题:
数形结合.
根据抛物线开口方向对①进行判断;
根据抛物线的对称轴位置对②进行判断;
根据抛物线与y轴的交点位置对③进行判断;
根据抛物线与x轴的交点个数对④进行判断.
∵抛物线开口向下,
∴a<0,所以①错误;
∵抛物线的对称轴在y轴右侧,
﹣>0,∴
b>0,所以②∴正确;
抛物线与y∵轴的交点在x轴上方,
c∴>0,所以③错误;
抛物线与x∵轴有2个交点,
2=b∴△﹣4ac>0,所以④正确.
故选B.点评:
2+bx+c(a≠0y=ax),二次项系数a决定抛物线的本题考查了二次函数图象与系数的关系:
对于二次函数开口方向和大小,当a>0时,抛物线向上开口;
当a<0时,抛物线向下开口;
一次项系数b和二次项系数a共同决定对称轴的位置:
当a与b同号时(即ab>0),对称轴在y轴左;
当a与b异号时(即ab<0),对称轴在y轴右.(简称:
左同右异);
常数项c决定抛物线与y轴交点:
抛物线与y轴交于(0,22﹣4ac=0=b时,个交点;
时,抛物线与x轴有2x轴交点个数由△决定:
△=b△﹣4ac>0).抛物线与c2﹣4ac<0=b时,抛物线与x轴没有交点.抛物线与x轴有1个交点;
△9、
圆周角定理.
计算题.
先根据半圆(或直径)所对的圆周角是直角得到∠ACB=90°
,再利用互余得∠ACD=90°
﹣∠DCB=70°
,然后根据同弧或等弧所对的圆周角相等求解.
∵AB为⊙O直径,
∴∠ACB=90°
,
∴∠ACD=90°
﹣∠DCB=90°
﹣20°
=70°
∴∠DBA=∠ACD=70°
.
故选D.
本题考查了圆周角定理:
在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:
半圆(或直径)所对的圆周角是直角,90°
的圆周角所对的弦是直径.
10、
一元一次方程的应用.
设商品进价为每件x元,则售价为每件0.8×
200元,由利润=售价﹣进价建立方程求出其解即可.
设商品的进价为每件x元,售价为每件0.8×
200元,由题意,得
0.8×
200=x+40,
解得:
x=120.
本题考查了销售问题的数量关系利润=售价﹣进价的运用,列一元一次方程解实际问题的运用,解答时根据销售问题的数量关系建立方程是关键.
11、
作图—复杂作图.
由PB+PC=BC和PA+PC=BC易得PA=PB,根据线段垂直平分线定理的逆定理可得点P在AB的垂直平分线上,于是可判断D选项正确.
7
∵PB+PC=BC,
而PA+PC=BC,
∴PA=PB,
∴点P在AB的垂直平分线上,
即点P为AB的垂直平分线与BC的交点.
本题考查了复杂作图:
复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.
12、
翻折变换(折叠问题);
全等三角形的判定与性质;
正方形的性质;
相似三角形的判定与性质.
根据正方形的性质和折叠的性质可得AD=DF,∠A=∠GFD=90°
,于是根据“HL”判定△ADG≌△FDG,再由GF+GB=GA+GB=12,EB=EF,△BGE为直角三角形,可通过勾股定理列方程求出AG=4,BG=8,进而求出△BEF的面积,再抓住△BEF是等腰三角形,而△GED显然不是等腰三角形,判断③是错误的.
由折叠可知,DF=DC=DA,∠DEF=∠C=90°
∴∠DFG=∠A=90°
∴△ADG≌△FDG,①正确;
∵正方形边长是12,
∴BE=EC=EF=6,
设AG=FG=x,则EG=x+6,BG=12﹣x,
由勾股定理得:
EG2=BE2+BG2,
即:
(x+6)2=62+(12﹣x)2,
x=4
∴AG=GF=4,BG=8,BG=2AG,②正确;
BE=EF=6,△BEF是等腰三角形,易知△GED不是等腰三角形,③错误;
=,④GFB=正确.S×
6×
8=24,△?
BEF=S△S△GFB=.故选:
C
本题综合性较强,考查了翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,平行线的判定,三角形的面积计算,有一定的难度.二、填空题:
13、
提公因式法与公式法的综合运用.
原式提取3,再利用平方差公式分解即可.
22)=3(a+b)(a(a﹣b﹣b),=3解答:
原式故答案为:
3(a+b)(a﹣b)
此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
14、
8
列表法与树状图法.
利用树状图法列举出所有可能,看是否能被3整除.找出满足条件的数的个数除以总的个数即可.
如图所示:
=.,21两种.因此概率为共有6种情况,能被3整除的有12故答案为:
本题考查了树状图法求概率以及概率公式,注意能被3整除即两位数加起来和为3的倍数.
15、
规律型:
图形的变化类.
由图形可以看出:
第一行小太阳的个数是从1开始连续的自然数,第二行小太阳的个数是1、2、4、n1﹣、2,由此计算得出答案即可.8、…个太阳,5个图形有53、4、…,第、解答:
第一行小太阳的个数为12、n14﹣个太阳,=162,第5个图形有1第二行小太阳的个数是、2、4、8、…、2个太阳.个图形共有5+16=21所以第5.故答案为:
21,21,点评:
此题考查图形的变化规律,找出图形之间的运算规律,利用规律解决问题.第二行的规律是个太阳。
;
故第五个图中共有21,8,…,故第五个数是16416、
反比例函数系数k的几何意义;
根据反比例函数系数k的几何意义,证明△ABC∽△EOB,根据相似比求出BA?
BO的值,从而求出△AOB的面积.
∵△BCE的面积为8,
∴,
∴BC?
OE=16,
∵点D为斜边AC的中点,
∴BD=DC,
∴∠DBC∠DCB=∠EBO,
又∠EOB=∠ABC,
∴△EOB∽△ABC,
∴AB?
OB?
=BC?
OE
∴k=AB?
BO=BC?
OE=16.
故答案为:
16.
本题考查了反比例函数系数k的几何意义,解决本题的关键是证明△EOB∽△ABC,得到AB?
OE.
三、解答题:
17、
实数的运算;
零指数幂;
负整数指数幂;
特殊角的三角函数值.
9
原式第一项利用绝对值的代数意义化简,第二项利用特殊角的三角函数值计算,第三项利用负整数指数幂法则计算,最后一项利用零指数幂法则计算即可得到结果.
×
+2﹣+21=3.解答:
原式=2﹣点评:
此题考查了实数的运算,熟练掌握运算法则是解本题的关键.
18、
解分式方程.
分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
2﹣2x+10x﹣15=4(2x﹣3)(3x﹣解答:
去分母得:
3x2),
222﹣20x+13=07x,﹣15=24x﹣52x+24整理得:
3x,即﹣2x+10x分解因式得:
(x﹣1)(7x﹣13)=0,
=,x解得:
x=1,21
都为分式方程的解.=x=1与x经检验21点评:
此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.
19、
条形统计图;
用样本估计总体;
扇形统计图.
(1)根据看1本书的人数为40人,所占的百分比为10%,40÷
10即可求出总人数,用100%﹣10%﹣25%﹣45%即可得x的值,用总人数乘以x的值,即可得到3本以上的人数,即可补全统计图;
(2)用x的值乘以360°
,即可得到圆心角;
(3)用6.7万乘以三本以上的百分比,即可解答.
(1)40÷
10%=400(人),
x=100%﹣10%﹣25%﹣45%=20%,400×
20%=80(人),
20%,400;
如图所示;
(2)20%×
360°
=72°
72°
(3)67000×
20%=13400(人),
13400.
此题主要考查了条形图与扇形图的综合应用,解决此类问题注意图形有机结合,综合分析获取正确信息.条形统计图能清楚地表示出每个项目的数据;
扇形统计图直接反映部分占总体的百分比大小.
20、
解直角三角形的应用-仰角俯角问题.
10
关键三角形外角的性质求得∠DAF=30°
,得出AF=DF=10,在Rt△FGA中,根据正弦函数求出AG的长,加上BG的长即为旗杆高度.
如图,∵∠ADG=30°
,AFG=60°
∴∠DAF=30°
∴AF=DF=10,
在Rt△FGA中,
=5,×
AG=AF?
sin∠AFG=10
AB=1.5+5.∴
1.5+5)米.AB的高度为(答:
旗杆
本题考查了解直角三角形的应用﹣﹣仰角俯角问题,要求学生能借助仰角构造直角三角形并解直角三角形.
21、
(1)直接利用10a=23进而求出即可;
(2)首先判断得出x>22,进而表示出总水费进而得出即可.
(1)由题意可得:
10a=23,
a=2.3,
答:
a的值为2.3;
(2)设用户水量为x立方米,
∵用水22立方米时,水费为:
22×
2.3=50.6<71,
∴x>22,
∴22×
2.3+(x﹣22)×
(2.3+1.1)=71,
x=28,
该用户用水28立方米.
3(x>22点评:
此题主要考查了一元一次方程的应用,根据图表中数据得出用户用水为x米)时的水费是解题关键.
22、
圆的综合题.
(1)根据题意得出BO的长,再利用路程除以速度得出时间;
(2)根据切线的性质和判定结合等腰直角三角形的性质得出AO的长,进而求出答案;
(3)利用圆周角定理以及切线的性质定理得出∠CEF=∠ODF=∠OFD=∠CFG,进而求出△CFG∽△CEF,即可得出答案.
t==2(s)BO=4cm1解答:
()解:
由题意可得:
,;
11
(2)解:
如图2,连接O与切点H,则OH⊥AC,
又∵∠A=45°
OH=3cm∴,AO=
3﹣3)cm;
∴AD=AO﹣DO=(
(3)证明:
如图3,连接EF,
∵OD=OF,
∴∠ODF=∠OFD,
∵DE为直径,
∴∠ODF+∠DEF=90°
∠DEC=∠DEF+∠CEF=90°
∴∠CEF=∠ODF=∠OFD=∠CFG,
又∵∠FCG=∠ECF,
∴△CFG∽△CEF,
=,∴
2CF∴=CG?
CE.
此题主要考查了切线的性质以及相似三角形的判定与性质、等腰直角三角形的性质等知识,根据题意得出△CFG∽△CEF是解题关键.
23、
二次函数综合题.
(1)把A、C两点坐标代入可求得b、c,可求得抛物线解析式;
(2)当点P在∠DAB的平分线上时,过P作PM⊥AD,设出P点坐标,可表示出PM、PE,由角平分线的性质可得到PM=PE,可求得P点坐标;
当点P在∠DAB外角平分线上时,同理可求得P点坐标;
(3)可先求得△FBC的面积,过F作FQ⊥x轴,交BC的延长线于Q,可求得FQ的长,可设出F点坐标,表示出B点坐标,从而可表示出FQ的长,可求得F点坐标.
2+bx+c经过点A(﹣3,0),点xy=∵1解:
()二次函数﹣C(0,3),
12
∴,
解得,2x﹣∴抛物线的解析式y=,2x+3﹣)存在,(2,PM⊥AD在∠DAB的平分线上时,如图1,作当P
,,PE=m(4﹣msin1,m),则PM=PD?
∠)ADE=(﹣设P,∵PM=PE,﹣=m,1m=∴(4﹣m));
,﹣1∴P点坐标为(﹣1AD,,作PN⊥的外角平分线上时,如图当P在∠DAB2
,PE=﹣n4﹣n),)设P(﹣1,n,则PN=PD?
sin∠(ADE=,∵PM=PE1n=,﹣﹣n∴(4﹣n)=﹣,;
1,﹣﹣∴P点坐标为(﹣1))﹣11,﹣;
)或(﹣综上可知存在满足条件的P点,其坐标为(﹣1,﹣1=3=3S,,2SS)3∵(EBCEBC△△△FBCS∴=,FBC△13
过F作FQ⊥x轴,交BC的延长线于Q,如图3,
S∵FQ=,OB==FQ?
FBC△∴FQ=9,
∵BC的解析式为y=﹣3x+3,
2﹣2x+3x),,﹣设F(x00023x∴﹣+2x﹣3=9+3+x,000
或(舍去),解得:
x=0,)F∴点.的坐标是(
本题主要考查二次函数的综合应用,涉及待定系数法、角平分线的性质、三角函数、三角形面积等知识点.在
(1)中注意待定系数法的应用步骤,在
(2)中注意分点P在∠DAB的角平分线上和在外角的平分线上两种情况,在(3)中求得FQ的长是解题的关键.本题所考查知识点较多,综合性很强,难度适中.
14