大学物理力学答案2.docx

上传人:b****2 文档编号:1820822 上传时间:2022-10-24 格式:DOCX 页数:15 大小:508.01KB
下载 相关 举报
大学物理力学答案2.docx_第1页
第1页 / 共15页
大学物理力学答案2.docx_第2页
第2页 / 共15页
大学物理力学答案2.docx_第3页
第3页 / 共15页
大学物理力学答案2.docx_第4页
第4页 / 共15页
大学物理力学答案2.docx_第5页
第5页 / 共15页
点击查看更多>>
下载资源
资源描述

大学物理力学答案2.docx

《大学物理力学答案2.docx》由会员分享,可在线阅读,更多相关《大学物理力学答案2.docx(15页珍藏版)》请在冰豆网上搜索。

大学物理力学答案2.docx

大学物理力学答案2

第二章基本知识小结

⒈基本概念

(向右箭头表示求导运算,向左箭头表示积分运算,积分运算需初始条件:

⒉直角坐标系与x,y,z轴夹角的余弦分别为.

与x,y,z轴夹角的余弦分别为.

yy'

V

oxo'x'

zz'

与x,y,z轴夹角的余弦分别为

⒊自然坐标系

⒋极坐标系

⒌相对运动对于两个相对平动的参考系

(时空变换)

(速度变换)

(加速度变换)

若两个参考系相对做匀速直线运动,则为伽利略变换,在图示情况下,则有:

2.1.1质点运动学方程为:

求质点轨迹并用图表示.

解:

⑴轨迹方程为的直线.

⑵,消去参数t得轨迹方程

2.1.2质点运动学方程为.⑴求质点轨迹;⑵求自t=-1到t=1质点的位移。

解:

⑴由运动学方程可知:

,所以,质点是在z=2平面内的第一像限的一条双曲线上运动。

所以,位移大小:

2.1.3质点运动学方程为.⑴求质点轨迹;⑵求质点自t=0至t=1的位移.

解:

⑴,消去参数t得:

2.2.1雷达站于某瞬时测得飞机位置为

0.75s后测得,R1,R2均在铅直面内,求飞机瞬时速率的近似值和飞行方向(α角)

解:

,在图示的矢量三角形中,应用余弦定理,可求得:

据正弦定理:

2.2.2一圆柱体沿抛物线轨道运动,抛物线轨道为y=x2/200(长度:

毫米)。

第一次观察到圆柱体在x=249mm处,经过时间2ms后,圆柱体移到x=234mm处。

求圆柱体瞬时速度的近似值。

解:

由于Δt很小,所以,,

其中,

其大小

;与x轴夹角

2.2.3一人在北京音乐厅内听音乐,离演奏者17m;另一人在广州听同一演奏的转播,广州离北京2320km,收听者离收音机2m,问谁先听到声音?

声速为340m/s,电磁波传播的速率为3.0×108m/s.

解:

声音传播情况如图所示,

北京人听到演奏声音所需时间:

广州人听到演奏声音所需时间:

2.2.5火车进入弯道时减速,最初列车向正北以90km/h速率行驶,3min后以70km/h速率向北偏西30°方向行驶,求列车的平均加速度。

解:

对矢量三角形应用余弦定理:

,由正弦定理:

2.2.6⑴,R为正常数,求t=0,π/2时的速度和加速度。

⑵,求t=0,1时的速度和加速度(写出正交分解式)。

解:

⑵;

2.3.1图中a、b和c表示质点沿直线运动三种不同情况下的x-t图像,试说明每种运动的特点(即速度,计时起点时质点的位置坐标,质点位于坐标原点的时刻)

解:

质点直线运动的速度

,在x-t图像中为曲线斜率。

由于三种图像都是直线,因此三种运动都是匀速直线运动,设直线与x轴正向夹角为α,则速度

对于a种运动:

对于b种运动:

对于c种运动:

2.3.2质点直线运动的运动学方程为x=acost,a为正常数,求质点速度和加速度,并讨论运动特点(有无周期性,运动范围,速度变化情况等)

解:

显然,质点随时间按余弦规律作周期性运动,运动范围:

2.3.3跳伞运动员的速度为,v铅直向下,β,q为正常量,求其加速度,讨论时间足够长时(即t→∞)速度、加速度的变化趋势。

解:

因为v>0,a>0,所以,跳伞员做加速直线运动,但当t→∞时,v→β,a→0,说明经过较长时间后,跳伞员将做匀速直线运动。

2.3.4直线运行的高速列车在电子计算机控制下减速进站。

列车原运行速率为v0=180km/h,其速率变化规律如图所示。

求列车行至x=1.5km时的加速度。

解:

,将v0=180km/h,x=1.5km代入

2.3.5在水平桌面上放置A、B两物体,用一根不可伸长的绳索按图示的装置把它们连接起来,C点与桌面固定,已知物体A的加速度aA=0.5g,求物体B的加速度。

解:

设整个绳长为L,取图示坐标o-x,则3xA+(-4xB)=L

对时间求两次导数,3aA=4aB,所以aB=3aA/4=3×0.5g/4=3g/8

2.3.6质点沿直线的运动学方程为x=10t+3t2.⑴将坐标原点沿o-x正方向移动2m,运动学方程如何?

初速度有无变化?

⑵将计时起点前移1s,运动学方程如何?

初始坐标和初速度发生怎样的变化?

加速度变不变?

解:

x=10t+3t2,v=dx/dt=10+6t,a=dv/dt=6,t=0时,x=0,v=10

⑴将坐标原点向x轴正向移动2m,即令x'=x-2,x=x'+2,则运动学方程为:

x'=10t+3t2-2,∵v'=dx'/dt=10+6t,∴v'=v

⑵将计时起点前移1s,即令t'=t+1,t=t'-1,则运动学方程变为:

x=10(t'-1)+3(t'-1)2=10t'–10+3t'2-6t'+3=4t'+3t'2–7

v'=dx/dt'=4+6t',t'=0时,x=-7,v'=4,加速度a不变。

2.4.1质点从坐标原点出发时开始计时,沿x轴运动,其加速度ax=2t(cms-2),求在下列两种情况下质点的运动学方程,出发后6s时质点的位置、在此期间所走过的位移及路程。

⑴初速度v0=0;⑵初速度v0的大小为9cm/s,方向与加速度方向相反。

解:

令vx=0,由速度表达式可求出对应时刻t=3,由于3秒前质点沿x轴反向运动,3秒后质点沿x轴正向运动,所以路程:

2.4.2质点直线运动瞬时速度的变化规律为:

vx=-3sint,求t1=3至t2=5时间内的位移。

解:

2.4.3一质点作直线运动,其瞬时加速度的变化规律为

ax=-Aω2cosωt.在t=0时,vx=0,x=A,其中A,ω均为正常数。

求此质点的运动学方程。

解:

 

2.4.4飞机着陆时为尽快停止采用降落伞制动,刚着陆时,t=0时速度为v0,且坐标x=0,假设其加速度为ax=-bvx2,b=常量,求飞机速度和坐标随时间的变化规律。

解:

2.4.5在195m长的坡道上,一人骑自行车以18km/h的速度和-20cm/s2的加速度上坡,另一自行车同时以5.4km/h的初速度和0.2m/s2的加速度下坡,问:

⑴经多长时间两人相遇?

⑵两人相遇时各走过多长的路程?

解:

以上坡者出发点为原点沿其前进方向建立坐标o-x,用脚标1表示上坡者,用脚标2表示下坡者。

两人的加速度实际上是相同的:

根据匀变速直线运动公式:

⑴令x1=x2,可求得相遇时间:

5t=195-1.5t,t=195/6.5=30s

⑵对于上坡者,在相遇期间做的不一定是单方向直线运动,据上坡者的速度表达式:

v1=5-0.2t,令v1=0,求得对应时刻t=25s,所以,上坡者在25s前是在上坡,但25s后却再下坡。

因此,上坡者在30s内走过的路程:

对于下坡者,因为做单方向直线运动,所以30s内走过的路程:

2.4.6站台上送行的人,在火车开动时站在第一节车厢的最前面,火车开动后经过Δt=24s,火车第一节车厢的末尾从此人的前面通过,问第七节车厢驶过他面前需要多长时间?

火车做匀加速运动。

解:

设每节车厢长为L,以地为参考系,以人所在点为原点建立图示坐标o-x,以第一节车厢的前端点为研究对象,t=0时,前端点的坐标x=0,速度v=0,据匀加速运动公式:

,令x=L,求得:

,∴

令x=6L,可求得第6节车厢尾端通过人时所需时间t6:

令x=7L,可求得第7节车厢尾端通过人时所需时间t7:

因此,第7节车厢通过人所需时间:

2.4.7在同一铅直线上相隔h的两点以同样速率v0上抛二石子,但在高处的石子早t0秒被抛出,求此二石子何时何处相遇?

解:

以地为参考系,建立图示坐标o-y。

据题意,设t=0时,上面石子坐标y1=h,速度v1=v0;t=t0时,下面石子坐标y2=0,v2=v0

解法1:

根据匀变速直线运动的规律,可知

解法2:

可根据速度、加速度的导数定义和初始条件,通过积分得到⑴、⑵,然后求解。

2.4.8电梯以1.0m/s的匀速率下降,小孩在电梯中跳离地板0.50m高,问当小孩再次落到地板上时,电梯下降了多长距离?

解:

以电梯为参考系,小孩相对电梯做竖直上抛运动,他从起跳到再次落到地板所需时间,是他从最高处自由下落到地板所需时间的2倍。

由自由落体运动公式:

,可求得从最高出落到地板所需时间:

,所以小孩做竖直上抛所需时间为0.64s,在此时间内电梯对地下落距离:

L=1.0×0.64=0.64m

2.5.1质点在o-xy平面内运动,其加速度为,位置和速度的初始条件为:

t=0时,,求质点的运动学方程并画出轨迹。

解:

2.5.2在同一竖直面内的同一水平线上A、B两点分别以30º、60º为发射角同时抛出两球,欲使两小球相遇时都在自己的轨道的最高点,求A、B两点间的距离。

已知小球在A点的发射速度vA=9.8米/秒。

YvAO

vBO

30º60º

ASBx

解:

以A点为原点建立图示坐标系,取发射时刻为计时起点,两点间距离为S,初始条件如图所示。

据斜抛规律有:

满足题中条件,在最高点相遇,必有vAy=vBy=0,xA=xB

2.5.3迫击炮的发射角为60°发射速率150m/s,炮弹击中倾角为30°的山坡上的目标,发射点正在山脚,求弹着点到发射点的距离OA.

解:

以发射点为原点,建立图示坐标o-x,斜抛物体的轨迹方程为(见教材):

本题,α=60°,v0=150m/s,A点坐标xA,yA应满足轨迹方程,所以:

另外,根据图中几何关系,可知:

,代入①中,有:

2.5.4轰炸机沿与铅直方向成53°俯冲时,在763m的高度投放炸弹,炸弹在离开飞机5.0s时击中目标,不计空气阻力:

⑴轰炸机的速率是多少?

⑵炸弹在飞行中通过的水平距离是多少?

⑶炸弹击中目标前一瞬间的速度沿水平和铅直方向的分量是多少?

解:

以投放点为原点,建立图示坐标o-xy,设炸弹初速度(即轰炸机速度)为v0.由于炸弹在飞行过程中的加速度,所以炸弹在x方向做匀速直线运动,在y方向做竖直下抛运动,有

⑴令t=5.0s,y=763m,由④可求得轰炸机的速率:

⑵将v0代入①中,可求得炸弹击中目标时速度的水平分量:

令t=5,由②可求得炸弹击中目标时速度的竖直分量:

2.5.5雷达监测员正在监视一越来越近的抛射体,在某一时刻,他给出这样的信息:

⑴抛射体达到最大高度且正以速率v沿水平方向运动;⑵观测员到抛射体的直线距离是l;⑶观测员观测抛体的视线与水平方向成θ角。

问:

⑴抛射体命中点到观测者的距离D等于多少?

⑵何种情况下抛体飞越观察员的头顶以后才命中目标?

何种情况下抛体在未达到观察员以前就命中目标?

解:

以抛体所达最大高度处为计时起点和坐标原点,建立图示坐标o-xy,抛体以速度v做平抛运动.

设命中时间为t1,由自由落体公式:

命中点x坐标为:

,由图中几何关系,观测者的x坐标:

所以,观测者与命中点间的距离:

当x1

当x1>x2,即时,则抛体在飞越观察员后才命中目标。

2.6.1列车在圆弧形轨道上自东转向北行驶,在我们所讨论的时间范围内,其运动学方程为S=80t-t2(m,s),t=0时,列车在图中O点,此圆弧形轨道的半径r=1500m,求列车驶过O点以后前进至1200m处的速率及加速度。

解:

S=80t-t2①v=dS/dt=80-2t②

令S=1200,由①可求得对应时间:

将t=60代入②中,v=-40,不合题意,舍去;将t=20代入②中,v=40m/s,此即

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 工作范文 > 演讲主持

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1