Lecture notes module 1文档格式.docx

上传人:b****6 文档编号:17911422 上传时间:2022-12-12 格式:DOCX 页数:34 大小:399.86KB
下载 相关 举报
Lecture notes module 1文档格式.docx_第1页
第1页 / 共34页
Lecture notes module 1文档格式.docx_第2页
第2页 / 共34页
Lecture notes module 1文档格式.docx_第3页
第3页 / 共34页
Lecture notes module 1文档格式.docx_第4页
第4页 / 共34页
Lecture notes module 1文档格式.docx_第5页
第5页 / 共34页
点击查看更多>>
下载资源
资源描述

Lecture notes module 1文档格式.docx

《Lecture notes module 1文档格式.docx》由会员分享,可在线阅读,更多相关《Lecture notes module 1文档格式.docx(34页珍藏版)》请在冰豆网上搜索。

Lecture notes module 1文档格式.docx

Figure1.Graphicalrepresentationofmodel

(1)y=a+bx,fora=8,b=3.

Thismodelisinfacttheequationforastraightline,withinterceptaandslopeb,aandbaretheso-calledparameters.Obviously,amodelcantakemanymoreformsthanjustthissimpleequation.Othertypesare:

Eqn2

Thismodeldisplaysanexponentialrelationship:

seeFigure2.

Figure2.Graphicalrepresentationofmodel(2:

)y=aexp(bx)fora=2,b=0.3(A)anda=10,b=-0.3(B)

AnothermodelisshowninFigure3,ahyperbola:

Eqn3

Figure3.Graphicalrepresentationofmodel(3)fora=3,b=1

Yetanothermodelisapolynomialoforder3,displayedinFigure4:

Eqn4

Figure4.Graphicalrepresentationofmodel(4),fora=2,b=3,c=4.

So,typically,modelscontaintheindependent(thex-value)andthedependentvariable(they-value)andnexttothattheparameters(a,bandcintheaboveexamples).Itistheparametersthatweareafter,theycontainspecificinformationabouttheunderlyingprocessthatweattempttodescribewithourmodel.

Togeneralize,anequationcanbewrittenas:

Eqn5

inwhichθrepresentsparameters(a,b,cintheaboveexamples),ξrepresentstheindependentvariable(‘thex-value’),andηthedependentorresponsevalue(theyvalue).Equation(5)isthenotationforageneralmodelthatyouoftenfindinstatisticalliterature.

Howcanwefindasuitablemodelforourproblems?

Asstatedbefore,amodelshouldreflectaquantitativerelationbetweenanindependentandaresponsevariable.Weareverymuchdependentonexperimentalmeasurements;

thereisnogeneraltheorythatpredictshowrelationsshouldbeinfoods.(Thisisnottosaythattheoryisnotimportant,itdefinitelyisaswealsoshallseeinthiscourse,buttheavailabletheoryisnotsufficienttopredictquantitativerelations.)

Therefore,thefirstthingtodo,always,istosimplyplottheexperimentaldata,andseehowtherelationlookslike.Thiswillgiveanimportantclue,forinstancewhethertherelationislinearornon-linear,whetheritlookslikeahyperbolaoraparabola,etc.Themathematicalmodelsweneedinfood-scienceproblemsareusuallydescribingchangesintimeand/orspace,intheformof:

-Algebraicequations(suchastheonesdisplayedinequations(1–4)

-Differentialequationsoftheform

-Partialdifferentialequationsoftheform

Deterministicandstochasticmodels

Ifyoulookcloselyatsuchequations,youwillnoticethatforfixedvaluesoftheparametersthesameoutputy-valuewillalwaysbefoundforthesameinputxvalue.Thatmakesthemso-calleddeterministicmodels,thereisnouncertaintyinvolved,theoutputvaluesareexactlydeterminedbytheinputvalues.However,asmentionedbefore,weneedtoestimateparametersfromexperiments,andexperimentalvaluesarealwaysuncertaintosomeextent.Itisveryessentialtobeabletoestimatethisexperimentaluncertainty;

fortunatelywecandothatfromrepeatedexperiments.

Errorsanderrors

So,themodelsthatwearegoingtousearebaseduponexperimentalobservations.Experimentalobservationsalwayscontainunexplicableandunavoidableerrorandthereforealsothemodelsbasedupontheseexperimentswillbeuncertain,andsincewewanttousemodelstopredict,alsoourpredictionswillcontainacertainerror!

Thisistheveryreasonwhyweinsistsomuchondiscussingerrors:

theyarealwaysthereandweneedtocharacterizethemquantitatively.

Atthisstageitisimportanttospendattentiontotwoconceptsinrelationtomeasurements:

accuracyandprecision.Accuracyisabouthowclosemeasurementsaretotherealvalue.Thisisaphilosophicallyinterestingstatementbecausewedonotknowtherealvalue,weare,afterall,tryingtoestimateit!

Nevertheless,thereisareal,truevaluethatwewanttoapproximateascloseaspossible;

ifthereisaconstant,systematicdeviationbetweentheactualmeasurementandthe(unknown)truevaluethisiscalledasystematicerror.Accuracycanonlybeobtainedbycarefullycalibratinginstruments,solutions,weightingmeasurements,etc.,usingmaterialswithaknowncomposition.Thisisthefullresponsibilityoftheresearcherwhodoesthemeasurement.Statisticscannotcorrectforsystematicerrors!

Theotherconceptisofprecision:

howclosearethemeasuredvaluestogether,orhowstronglyaretheydispersed?

Thesearerandomerrorsthatoccurbychanceanduncontrolled.Youcanhaveanaccuratebutimprecisemeasurement,butalsoanimprecisebutaccuratemeasurement.Figure5givesanimpressionofthepossibilities.Thestatisticalmethodsthatwediscussinthiscourseareaboutprecision;

weassumethataccurateresultshavebeenobtainedorreportedinliterature,i.e.,withoutsystematicerror.Wealsoassumethatrandomerrorsaremeasuredandreported;

theyareeasilyidentifiedbydoingrepetitions.Unfortunately,manyliteraturesourcesdonotreporttheseerrorsveryclearly,whichmaybeconsideredacapitalsininscience!

Figure5.Aschematicrepresentationofaccuracyandprecision

 

Wecanmakeafurtherdivisioninthenatureofrandomerrors,namelyhomoscedasticandheteroscedasticerrors:

seeFigure6.

Figure6.Schematicrepresentationofhomoscedastic(A)andheteroscedasticerrors(B,C).

Homoscedasticerrorsareerrorsthatdonotdifferwiththex-values,orinotherwords,theerrorsareapproximatelyconstantandindependentoftheindependentvariablex;

heteroscedasticerrorsdodependonthex-value.InFigure7Bthecaseisshownthattheerrorsinyincreasewithincreasingx.Itcould,inprinciple,bealsotheotherwayaround,asshowninFigure7C.Itisveryinstructivejusttoplotresultssothatitisimmediatelyobviouswhethertheerrorsarehomoscedasticornot.Theimportanceofknowingthisbecomesclearwhenwediscussregressiontechniquesinamoment.

Howtoestimateerrors?

Animportantconsequenceofexperimentaluncertaintyisthaterrorsarecarriedovertotheparameters.So,weareinneedofmodelsthatareabletoexpressthisuncertainty.Thatbringsusintotheareaofstochasticmodels.Equation(5)needstobeextendedasfollows:

Eqn6

Thetermεrepresentsthe“error”term(itisnotanerrorinthesensethatsomethingiswrong,itrepresentstheuncertaintywearefacedwith).Howcanweputanumbertothiserrorterm?

Quitesimplyfromexperiments(afterhavingexcludedsystematicerrors,seeabove):

repeatinganexperiment(notjustthemeasurementbutthewholetreatment!

)inexactlythesamewayshowstheuncontrollablevariation,andbydoingthatafewtimesthemeanandstandarddeviationcanbecalculated(preferablymorethantwotimesbecauseastandarddeviationbasedontwomeasurementsisquiteunreliable).Experimentaluncertaintytypicallyreducesbydoingmorerepetitions(seebelow).Nexttoexperimentaluncertaintythereisalsobiologicalvariation:

foodsarenaturalmaterialsandtheircompositionvaries:

twoapplesthatcomefromthesametreewillvarynevertheless.Thisisunavoidableandwecannotreduceit,butwecancharacterizeitviastatistics!

Thisleadstowell-knownparametersasthemean,standarddeviation,standarderror,confidenceintervals.Let’sshowsomeexamples.SupposeafoodchemistinLabAdeterminedthecalciumcontentofthesamemilkinfiverepetitions(n=5),whileanotherfoodchemistdidthesamethinginLabBonthesamesampleofmilkbutnowwithtenrepetitions(n=10):

Sampleno

Calciumcontent(mg/100gmilk)

LabA

LabB

1

117.7

121.4

2

119.5

114.6

3

121.3

116.1

4

117.6

120.9

5

110.2

109.3

6

7

117.3

8

119.8

9

116.6

10

123.5

Table1.Determinationsontheestimationofthecalciumcontentinmilkintwodifferentlabs

Notethatthisexperimentalsetupgivesinformationabouttheimprecisionofmeasuring.Itdoesnotgiveinformationaboutbiologicalvariationbecausethesamebatchofmilkwasanalysed.Forinformationaboutbiologicalvariabilityofcalciuminmilk,onewouldhavetoanalysesamplesfromdifferentbatches;

thevariabilityobservedinsuchacasewouldbethesumofthecontributionofthebiologicalvariability+theexperimentaluncertainty.

Forthepresentexample,thesamplemeanis:

Eqn7

Thisresultsin117.3mg/100gmilkforLabAand117.6mg/100gmilkforLabB.Notethatthemeansarenotexactlythesame,butquiteclose.

Thesamplevariancevis:

Eqn8

Thisresultsinv=17.8forLabAand16.6forLabB.

Thesamplevarianceisactuallythesumofsquaresdividedbythedegreesoffreedom;

onedegreeoffreedomislostbecausethemeanisesti

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 医学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1