环境化学课后答案戴树桂主编第二版章文档格式.docx
《环境化学课后答案戴树桂主编第二版章文档格式.docx》由会员分享,可在线阅读,更多相关《环境化学课后答案戴树桂主编第二版章文档格式.docx(13页珍藏版)》请在冰豆网上搜索。
标化分配系数;
辛醇-水分配系数;
生物浓缩因子;
亨利定律常数;
水解速率;
直接光解;
光量子产率;
生长物质代谢和共代谢.
(1)分配系数:
在土壤-水体系中,土壤对非离子性有机化合物的吸着主要是溶质的分配过程(溶解),即非离子性有机化合物可通过溶解作用分配到土壤有机质中,并经过一定时间达到分配平衡,此时有机化合物在土壤有机质和水中含量的比值称为分配系数.
(2)标化分配系数:
有机化合物在颗粒物-水中的分配系数与颗粒物中有机碳呈正相关,以固相有机碳为基础的分配系数即标化分配系数.
(3)辛醇-水分配系数:
有机化合物的正辛醇-水分配系数(KOW)是指平衡状态下化合物在正辛醇和水相中浓度的比值.它反映了化合物在水相和有机相之间的迁移能力,是描述有机化合物在环境中行为的重要物理化学参数.KOW与化合物的水溶性,土壤吸附常数和生物浓缩因子等密切相关.
(4)生物浓缩因子:
有机毒物在生物体内浓度与水中该有机物浓度之比.
(5)亨利定律常数:
通常可理解为非电解质稀溶液的气-水分配系数.
(6)水解速率:
反映某一物质在水中发生水解快慢程度的一个参数.
(7)直接光解:
化合物本身直接吸收太阳能而进行分解反应.
(8)光量子产率:
分子被活化后,它可能进行光反应,也可能通过光辐射的形式进行"
去活化"
再回到基态,进行光化学反应的光子数占吸收光子数之比称为光量子产率.
(9)生长物质代谢和共代谢:
生物降解过程中,一些有机污染物作为食物源提供能量和提供酶催化反应分解有机物,这称为生长物质代谢.某些有机污染物不能作为微生物的唯一碳源与能源,必须有另外的化合物存在提供微生物碳源或能源时,该有机物才能被降解,这种现象称为共代谢.
5请叙述有机物在水环境中的迁移,转化存在哪些重要过程.
(1)负载过程:
污水排放速率,大气沉降以及地表径流引入有机毒物至天然水体均将直接影响污染物在水中的浓度.
(2)形态过程:
①酸碱平衡:
天然水中pH决定着有机酸或碱以中性态存在的分数,因而影响挥发及其他作用.
②吸着作用:
疏水有机化合物吸着至悬浮物上,由于悬浮物质的迁移而影响它们以后的归趋.
(3)迁移过程:
①沉淀-溶解作用:
污染物的溶解度范围可限制污染物在迁移,转化过程中的可利用性或者实质上改变其迁移速率.
②对流作用:
水力流动可迁移溶解的或者被悬浮物吸附的污染物进入或排出特定的水生生态系统.
③挥发作用:
有机污染物可能从水体进入大气,因而减少其在水中的浓度.
④沉积作用:
污染物被吸附沉积于水体底部或从底部沉积物中解吸,均可改变污染物的浓度.
(4)转化过程:
①生物降解作用:
微生物代谢污染物并在代谢过程中改变它们的毒性.
②光解作用:
污染物对光的吸收有可能导致影响它们毒性的化学反应的发生.
③水解作用:
一个化合物与水作用通常产生较小的,简单的有机产物.
④氧化还原作用:
涉及减少或增加电子在内的有机污染物以及金属的反应都强烈地影响环境参数.
(5)生物累积过程:
①生物浓缩作用:
通过可能的手段如通过鱼鳃的吸附作用,将有机污染物摄取至生物体.
②生物放大作用:
高营养级生物以消耗摄取有机毒物进入生物体低营养级生物为食物,使生物体中有机毒物的浓度随营养级的提高而增大.请叙述有机物水环境归趋模式的基本原理。
第四章土壤环境化学
1.什么是土壤的活性酸度与潜性酸度?
试用它们二者的关系讨论我国南方土壤酸度偏高的原因。
根据土壤中H+的存在方式,土壤酸度可分为活性酸度与潜性酸度两大类。
(1)活性酸度:
土壤的活性酸度是土壤溶液中氢离子浓度的直接反映,又称有效酸度,通常用pH表示。
(2)潜性酸度:
土壤潜性酸度的来源是土壤胶体吸附的可代换性H+和Al3+。
当这些离子处于吸附状态时,是不显酸性的,但当它们经离子交换作用进入土壤溶液后,即可增加土壤溶液的H+浓度,使土壤pH值降低。
南方土壤中岩石或成土母质的晶格被不同程度破坏,导致晶格中Al3+释放出来,变成代换性Al3+,增加了土壤的潜性酸度,在一定条件下转化为土壤活性酸度,表现为pH值减小,酸度偏高。
2.土壤的缓冲作用有哪几种?
举例说明其作用原理。
土壤缓冲性能包括土壤溶液的缓冲性能和土壤胶体的缓冲性能:
(1)土壤溶液的缓冲性能:
土壤溶液中H2CO3、H3PO4、H4SiO4、腐殖酸和其他有机酸等弱酸及其盐类具有缓冲作用。
以碳酸及其钠盐为例说明。
向土壤加入盐酸,碳酸钠与它生成中性盐和碳酸,大大抑制了土壤酸度的提高。
Na2CO3+2HCl
2NaCl+H2CO3
当加入Ca(OH)2时,碳酸与它作用生成难溶碳酸钙,也限制了土壤碱度的变化范围。
H2CO3+Ca(OH)2
CaCO3+2H2O
土壤中的某些有机酸(如氨基酸、胡敏酸等)是两性物质,具有缓冲作用,如氨基酸既有氨基,又有羧基,对酸碱均有缓冲作用。
(2)土壤胶体的缓冲作用:
土壤胶体吸附有各种阳离子,其中盐基离子和氢离子能分别对酸和碱起缓冲作用。
对酸缓冲(M-盐基离子):
对碱缓冲:
Al3+对碱的缓冲作用:
在pH小于5的酸性土壤中,土壤溶液中Al3+有6个水分子围绕,当OH-增多时,Al3+周围的6个水分子中有一、二个水分子离解出H+,中和OH-:
2Al(H2O)63++2OH-
[Al2(OH)2(H2O)8]4++4H2O
3.植物对重金属污染产生耐性作用的主要机制是什么?
不同种类的植物对重金属的耐性不同,同种植物由于其分布和生长的环境各异可能表现出对某种重金属有明显的耐性。
(1)植物根系通过改变根系化学性状、原生质泌溢等作用限制重金属离子的跨膜吸收。
(2)重金属与植物的细胞壁结合,而不能进入细胞质影响细胞代谢活动,使植物对重金属表现出耐性。
(3)酶系统的作用。
耐性植物中酶活性在重金属含量增加时仍能维持正常水平,此外在耐性植物中还发现另一些酶可被激活,从而使耐性植物在受重金属污染时保持正常代谢过程。
(4)形成重金属硫蛋白或植物络合素,使重金属以不具生物活性的无毒螯合物形式存在,降低了重金属离子活性,从而减轻或解除其毒害作用。
4.举例说明影响农药在土壤中进行扩散和质体流动的因素有哪些?
(1)影响农药在土壤中扩散的因素主要是土壤水分含量、吸附、孔隙度、温度及农药本身的性质等:
①土壤水分含量:
研究表明林丹的汽态和非汽态扩散情况随土壤水分含量增加而变化。
②吸附:
土壤对农药的吸附改变了其扩散的情况,如土壤对2,4-D的化学吸附,使其有效扩散系数降低了,两者呈负相关关系。
③土壤紧实度:
土壤紧实度对农药的扩散的情况有影响是因为对于以蒸汽形式进行扩散的化合物来说,增加紧实度就降低了土壤孔隙率,扩散系数就自然降低了。
如二溴乙烷、林丹等农药在土壤中的扩散系数随紧实度增加而降低。
④温度:
温度增高的总效应是使扩散系数增大。
⑤气流速度:
气流速度可直接或间接地影响农药的挥发。
如果空气的相对湿度不是100%,那么增加气流就促进土壤表面水分含量降低,可以使农药蒸汽更快地离开土壤表面,同时使农药蒸汽向土壤表面运动的速度加快。
⑥农药种类:
不同农药的扩散行为不同。
如有机磷农药乐果和乙拌磷在Broadbalk粉砂壤土中的扩散行为就是不同的。
(2)影响农药在土壤中质体流动的因素有农药与土壤的吸附、土壤种类和农药种类等。
①农药与土壤吸附:
非草隆、灭草隆、敌草隆、草不隆四种农药吸附最强者移动最困难,反之亦然。
②土壤种类:
土壤有机质含量增加,农药在土壤中渗透深度减小;
增加土壤中粘土矿物的含量,农药的渗透深度也减小。
③农药种类:
不同农药在土壤中通过质体流动转移的深度不同。
如林丹和DDT。
5.比较DDT和林丹在环境中的迁移、转化与归趋的主要途径与特点。
DDT和林丹迁移转化、归趋主要途径与特点比较如下表所示:
迁移转化、归趋途径
特点
DDT
1)在土壤中移动不明显,易被吸附
2)通过根系渗入植物体
3)在土壤中按还原、氧化和脱氯化氢等机理被微生物降解
4)光解
1)不溶于水,高亲脂性,易通过食物链放大,积累性强
2)挥发性小,持久性高
3)在缺氧和高温时降解速度快
4)南方水田里DDT降解快于北方
林丹
1)从土壤和空气转入水体
2)挥发而进入大气
3)在土壤生物体内积累
4)植物积累
1)易溶于水
2)挥发性强,持久性低
3)在生物体内积累性较DDT低
6.试述有机磷农药在环境中的主要转化途径,并举例说明其原理。
有机磷农药在环境中转化途径有非生物降解和生物降解。
(1)有机磷农药的非生物降解
①吸附催化水解:
吸附催化水解是有机磷农药在土壤中降解的主要途径。
如地亚农等硫代硫酸酯的水解反应如下
②光降解:
有机磷农药可发生光降解反应,如辛硫磷在253.7nm的紫外光下照射30小时,其光解产物如下
(2)有机磷农药的生物降解
有机磷农药在土壤中被微生物降解是它们转化的另一条重要途径。
化学农药对土壤微生物有抑制作用。
同时,土壤微生物也会利用有机农药为能源,在体内酶或分泌酶的作用下,使农药发生降解作用,彻底分解为CO2和H2O。
如马拉硫磷被绿色木霉和假单胞菌两种土壤微生物以不同方式降解,其反应如下:
第五章生物体内污染物质的运动过程及毒性
1、在试验水中某鱼体从水中吸收有机污染质A的速率常数为18.76h-1,鱼体消除A的速率常数为2.38×
10-2h-1;
设A在鱼体内起始浓度为零,在水中的浓度可视作不变。
计算A在该鱼体内的浓缩系数及其浓度达到稳定浓度95%时所需的时间。
2、已知氨氮硝化数学模式适用于某一河段,试从下表中该河段的有关数据,写出这一模式的具体形式。
河段设置的断面
流经时间(h)
氨氮浓度(mg/L)
被硝化的氨氮浓度(mg/L)
Ⅰ
2.86
Ⅱ
2.37
2.04
0.63
Ⅲ
8.77
0.15
2.65
3、用查到的新资料,说明毒物的联合作用。
4、试说明化学物质致突变、致癌和抑制酶活性的生物化学作用机理。
答:
(1)致突变作用机理:
致突变性是指生物体中细胞的遗传性质在受到外源性化学毒物低剂量的影响和损伤时,以不连续的跳跃形式发生了突然的变异.致突变作用发生在一般体细胞时,则不具有遗传性质,而是使细胞发生不正常的分裂和增生,其结果表现为癌的形成.致突变作用如影响生殖细胞而使之产生突变时,就有可能产生遗传特性的改变而影响下一代,即将这种变化传递给子细胞,使之具有新的遗传特性.
(2)致癌机理:
致癌是体细胞不受控制的生长.其机理一般分两个阶段:
第一是引发阶段,即致癌物与DNA反应,引起基因突变,导致遗传密码改变.第二是促长阶段,主要是突变细胞改变了遗传信息的表达,增殖成为肿瘤,其中恶性肿瘤还会向机体其他部位扩展.
(3)抑制酶活性作用机理:
有些有机化合物与酶的共价结合,这种结合往往是通过酶活性内羟基来进行的;
有些重金属离子与含硫基的酶强烈结合;
某些金属取代金属酶中的不同金属.
5、解释下列名词概念:
①被动扩散;
②主动转运;
③肠肝循环;
④血脑屏障;
⑤半数有效剂量(浓度);
⑥阈剂量(浓度);
⑦助致癌物;
⑧促癌物;
⑨酶的可逆和不可逆抑制剂。
答:
(1)被动扩散:
脂溶性物质从高浓度侧向低浓度侧,即顺浓度梯度扩散通过有类脂层屏障的生物膜.
(2)主动转运:
在需要消耗一定代谢能量下,一些物质可在低浓度侧与膜上高浓度特异性蛋白载体结合,通过生物膜,至高浓度侧解离出原物质.
(3)肠肝循环:
有些物质由胆汁排泄,在肠道运行中又重新被吸收,该现象叫肠肝循环.
(4)血脑屏障:
脑毛细血管阻止某些物质(多半是有害的)进入脑循环血的结构.
(5)半数有效剂量(浓度):
毒物引起受试生物的半数产生同一毒作用所需的毒物剂量(浓度).
(6)阈剂量(浓度):
在长期暴露毒物下,会引起机体受损害的最低剂量(浓度).
(7)助致癌物:
可加速细胞癌变和已癌变细胞增殖成瘤块的物质.
(8)促癌物:
可使已经癌变细胞不断增殖而形成瘤块.
(9)酶的可逆和不可逆抑制剂:
抑制剂就是能减小或消除酶活性,而使酶的反应速率变慢或停止的物质.其中,以比较牢固的共价键同酶结合,不能用渗析,超滤等物理方法来恢复酶活性的抑制剂,称为不可逆抑制剂;
另一部分抑制剂是同酶的结合处于可逆平衡状态,可用渗析法除去而恢复酶活性的物质,称为可逆抑制剂.
6、试简要说明氯乙烯致癌的生化机制,和在一定程度上防御致癌的解毒转化途径。
第六章典型污染物在环境各圈层中的转归与效应
1、为什么Hg2+和CH3Hg+在人体内能长期滞留?
举例说明它们可形成哪些化合物。
这是由于汞可以与生物体内的高分子结合,形成稳定的有机汞络合物,就很难排出体外.此外,烷基汞具有高脂溶性,且它在生物体内分解速度缓慢(其分解半衰期约为70d),因而会在人体内长期滞留.
Hg2+和CH3Hg+可以与羟基,组氨酸,半胱氨酸,白蛋白形成络合物.甲基汞能与许多有机配位体基团结合,如—COOH,—NH2,—SH,以及—OH等.
2、砷在环境中存在的主要化学形态有哪些?
其主要转化途径有哪些?
砷在环境中存在的主要化学形态有五价无机砷化合物,三价无机砷化合物,一甲基胂酸及其盐,二甲基胂酸及其盐,三甲基胂氧化物,三甲基胂,砷胆碱,砷甜菜碱,砷糖等.
砷的生物甲基化反应和生物还原反应是砷在环境中转化的重要过程.主要转化途经如下:
3、试述PCDD是一类具有什么化学结构的化合物?
并说明其主要污染来源。
1)PCDD这类化合物的母核为二苯并一对二恶英,具有经两个氧原子联结的二苯环结构.在两个苯环上的1,2,3,4,6,7,8,9位置上可有1-8个取代氯原子,由氯原子数和所在位置的不同可能组合成75种异构体,总称多氯联苯并一对二恶英.其结构式如右:
(2)来源:
①在焚烧炉内焚烧城市固体废物或野外焚烧垃圾是PCDD的主要大气污染源.例如存在于垃圾中某些含氯有机物,如聚氯乙烯类塑料废物在焚烧过程中可能产生酚类化合物和强反应性的氯,氯化氢等,从而进一步生产PCDD类化合物的前驱物.除生活垃圾外,燃料(煤,石油),枯草败叶(含除草剂),氯苯类化合物等燃烧过程及森林火灾也会产生PCDD类化合物.②在苯氧酸除草剂,氯酚,多氯联苯产品和化学废弃物的生产,冶炼,燃烧及使用和处理过程中进入环境.③另外,还可能来源于一些意外事故和战争.
4、简述多氯联苯PCBs在环境中的主要分布、迁移与转化规律。
(1)分布:
由于多氯联苯挥发性和水中溶解度较小,故其在大气和水中的含量较少.近期报导的数据表明,在地下水中发现PCBs的几率与地表水中相当.此外,由于PCBs易被颗粒物所吸附,故在废水流入河口附近的沉积物中,PCBs含量较高.
水生植物通常可从水中快速吸收PCBs,其富集系数为1×
l04~l×
l05.通过食物链的传递,鱼体中PCBs的含量约在l~7mg/kg范围内(湿重).在某些国家的人乳中也检出一定量的PCBs.
(2)迁移:
PCBs主要在使用和处理过程中,通道挥发进入大气,然后经干,湿沉降转入湖泊和海洋.转入水体的PCBs极易被颗粒物所吸附,沉入沉积物,使PCBs大量存在于沉积物中.虽然近年来PCBs的使用量大大减少,但沉积物中的PCBs仍然是今后若干年内食物链污染的主要来源.
(3)转化:
PCBs由于化学惰性而成为环境中持久性污染物,它在环境中主要转化途径是光化学分解和生物转化.PCBs在紫外光的激发下碳氯键断裂,而产生芳基自由基和氯自由基,自由基从介质中取得质子,或者发生二聚反应.PCBs生物降解时,含氯原子数目越少,越容易降解.
5、根据多环芳烃形成的基本原理,分析讨论多环芳烃产生与污染的来源有哪些?
表面活性剂有哪些类型?
对环境和人体健康的危害是什么?
第七章受污染环境的修复
1.微生物修复所需的环境条件是什么?
微生物修复技术是指通过微生物的作用清除土壤和水体中的污染物,或是使污染物无害化的过程。
它包括自然和人为控制条件下的污染物降解或无害化过程。
在自然修复过程(naturalattenuation)中,利用土着微生物(indigenousmicroorganism)的降解能力,但需要有以下环境条件:
有充分和稳定的地下水流;
有微生物可利用的营养物;
有缓冲pH的能力;
有使代谢能够进行的电子受体。
如果缺少一项条件,将会影响生物修复的速率和程度。
特别是对于外来化合物,如果污染新近发生,很少会有土着微生物能降解它们,所以需要加入有降解能力的外源微生物(exogenousmicroorganism)。
2.请列举几种强化微生物原位修复技术。
原位强化修复技术包括生物强化法、生物通气法、生物注射法、生物冲淋法及生物翻耕法等。
(1)生物强化法是指在生物处理体系中投加具有特定功能的微生物来改善原有处理体系的处理效果,如对难降解有机物的去除等。
投加的微生物可以来源于原来的处理体系,经过驯化、富集、筛选、培养达到一定数量后投加,也可以是原来不存在的外源微生物。
(2)生物通气法(bioventing)用于修复受挥发性有机物污染的地下水水层上部通气层(VadoseZone)土壤。
这种处理系统要求污染土壤具有多孔结构以利于微生物的快速生长。
另外,污染物应具有一定的挥发性,亨利常数大于1.01325Pa·
m3·
mol-1时才适于通过真空抽提加以去除。
生物通气法的主要制约因素是影响氧和营养物迁移的土壤结构,不适的土壤结构会使氧和营养物在到达污染区之前被消耗。
(3)生物注射法(biosparging)又称空气注射法,这种方法适用于处理受挥发性有机物污染的地下水及上部土壤。
处理设施采用类似生物通气法的系统,但这里的空气是经过加压后注射到污染地下水的下部,气流加速地下水和土壤有机物的挥发和降解。
也有人把生物注射法归入生物通气法。
(4)生物冲淋法(bioflooding)将含氧和营养物的水补充到亚表层,促进土壤和地下水中的污染物的生物降解。
生物冲淋法大多在各种石油烃类污染的治理中使用,改进后也能用于处理氯代脂肪烃溶剂,如加入甲烷和氧促进甲烷营养菌降解三氯乙烯和少量的氯乙烯。
(5)土地耕作法(landfarming)就是对污染土壤进行耕犁处理。
在处理过程中施加肥料,进行灌溉,施加石灰,从而尽可能为微生物代谢污染物提供一个良好环境,使其有充足的营养、水分和适宜的pH值,保证生物降解在土壤的各个层面上都能发生。
3.请列举几种强化微生物异位修复技术。
异位生物修复主要包括堆肥法、生物反应器处理、厌氧处理。
(1)堆肥法(composting)是处理固体废弃物的传统技术,被用于受石油、洗涤剂、多氯烃、农药等污染土壤的修复处理,取得了很好的处理效果。
堆肥过程中,将受污染土壤与水(达到至少35%含水量)、营养物、泥炭、稻草和动物肥料混合后,使用机械或压气系统充氧,同时加石灰以调节pH。
经过一段时间的发酵处理,大部分污染物被降解,标志着堆肥完成。
经处理消除污染的土壤可返回原地或用于农业生产。
堆肥法包括风道式堆肥处理、好气静态堆肥处理和机械堆肥处理。
(2)生物反应器处理(bioreactor)是把污染物移到反应器中完成微生物的代谢过程。
这是一种很有价值和潜力的处理技术,适用于处理地表土及水体的污染。
生物反应器包括土壤泥浆生物反应器(soilslurrybioreactor)和预制床反应器(preparedbedreactor)。
(3)厌氧处理对某些具有高氧化状态的污染物的降解,如三硝基甲苯、多氯取代化合物(PCBs等)等,比耗氧处理更为有效。
但总的来说,在生物修复中好氧方法的使用要比厌氧方法广泛得多。
主要原因是,严格的厌氧条件难于达到,厌氧过程中会产生一些毒性更大、更难降解的中间代谢产物。
此外,厌氧发酵的终产物H2S和CH4也存在毒性和风险。
4.植物修复重金属的主要过程是什么?
根据其作用过程和机理,重金属污染土壤的植物修复技术可分为3种类型。
(1)植物提取:
利用重金属超积累植物从土壤中吸取一种或几种重金属,并将其转移、储存到地上部分,随后收割地上部分并集中处理,连续种植这种植物,即可使土壤中重金属含量降低到可接受的水平。
所谓超积累植物(hyperaccumulator),是指对重金属的吸收量超过一般植物100倍以上的植物,超积累植物积累的Cr、Co、Ni、Cu、Pb含量一般在110mg/kg(干重)以上,积累的Mn、Zn含量一般在10mg/kg(干重)以上。
超积累植物从根际吸收重金属,并将其转移和积累到地上部,这个过程中包括许多环节和调控位点:
跨根细胞质膜运输;
根皮层细胞中横向运输;
从根系的中柱