电力系统分析基础知识点总结Word格式文档下载.docx
《电力系统分析基础知识点总结Word格式文档下载.docx》由会员分享,可在线阅读,更多相关《电力系统分析基础知识点总结Word格式文档下载.docx(22页珍藏版)》请在冰豆网上搜索。
六.不对称故障的分析计算
1.单相接地短路
2.两相短路
3.两相接地短路
4.正序增广网络
七.非故障处电流电压的计算
1.电压分布规律
2.对称分量经变压器后的相位变化
一
一、填空题
1、我国国家标准规定的额定电压有3kv、6kv、10kv、35kv、110kv、220kv、330kv、500kv。
2、电能质量包含电压质量、频率质量、波形质量三方面。
3、无备用结线包括单回路放射式、干线式、链式网络。
4、有备用界结线包括双回路放射式、干线式、链式、环式、两端供电网络。
5、我国的六大电网:
东北、华北、华中、华东、西南、西北。
6、电网中性点对地运行方式有:
直接接地、不接地、经消弧线圈接地三种,其中直接接地为大接地电流系统。
7、我国110kv及以上的系统中性点直接接地,35kv及以下的系统中性点不接地。
二、简答题
1、电力网络是指在电力系统中由变压器、电力线路等变换、输送、分配电能设备所组成的部分。
2、电力系统是指由发电机、各类变电所和输电线路以及电力用户组成的整体。
3、总装机容量是指电力系统中实际安装的发电机组额定百功功率的总和。
4、电能生产,输送,消费的特点:
(1)电能与国民经济各个部门之间的关系都很密切
(2)电能不能大量储存
(3)生产,输送,消费电能各个环节所组成的统一整体不可分割
(4)电能生产,输送,消费工况的改变十分迅速
(5)对电能质量的要求颇为严格
5、对电力系统运行的基本要求
(1)保证可靠的持续供电
(2)保证良好的电能质量
(3)保证系统运行的经济性
6、变压器额定电压的确定:
变压器的一次侧额定电压应等于用电设备额定电压(直接和发电机相联的变压器一次侧额定电压应等于发电机的额定电压),二次侧额定电压应较线路额定电压高10%。
只有漏抗很小的、二次直接与用电设备相联的和电压特别高的变压器,其二次侧额定电压才可能较线路额定电压仅高5%。
7、所谓过补偿是指感性电流大于容性电流时的补偿方式,欠补偿正好相反,实践中,一般采用欠补偿。
二
1、按绝缘材料,电缆可分为
纸绝缘、橡胶绝缘、塑料绝缘
三种类型。
2、架空线路由导线、避雷线、杆塔、绝缘子和金具等构成。
3、电缆线路由导线、绝缘层、保护层等构成。
4.、导线主要由铝(Z)、钢(G)、铜(T)等材料构成。
5、线路电压超过220KV时为减小电晕损耗或线路电抗,采用扩径导线或分裂导线。
6、为了减少三相参数的不平衡采取架空线路的换位。
1、⑴普通钢芯、铝线,标号为LGJ,铝线和钢线部分截面积的比值为5.3~6.0。
⑵加强型钢芯铝线,标号为LGJT,铝线和钢线部分截面积的比值为4.3~4.4。
⑶轻型钢芯铝线,标号为LGJQ,铝线和钢线部分截面积的比值为8.0~8.1。
2、整换位循环,指一定长度内,有两次换位而三相导线都分别处于三个不同位置,完成一次完整的循环。
3、钢芯铝线的电阻,由于可只考虑主要载流部分——铝线部分的载流作用,可认为与同样额定截面积的铝线相同。
4、分裂导线的采用改变了导线周围的磁场分布,等效的增长了导线半径,从而减小了导线电抗。
5、单位长度钢导线的电抗就是单位长度外电抗和内点抗之和。
6、电缆线路的电阻路略大于相同面积的架空线路,而电抗则小得多,电抗不是因为电缆三相导体间的距离远小于同样电压级的架空桥路。
7、所谓长线路是指在长度100~300km之间的架空线路。
8、一般线路,指中等及中等以下长度线路,对架空线路,对长度大约为300km,对电缆线路,大约为100km。
9、短线路是指长度超过100km的架空线路,线路电压不高时,这种线路电纳的影响一般不大,可略去。
10、电力系统负荷的运行特性广义分为负荷曲线和负荷特性,负荷曲线是指负荷随时间而变化的规律,负荷特性是指负荷随电压或频繁变化的规律。
11、综合用电负荷是将工业、农业、邮电交通、市政、商业以及城乡居民所消耗的相加功率,因而称电力系统的供电负荷;
12、供电负荷再加各发电厂本身所消耗的功率——厂用电,是系统中各发电机应发的功率,称电力系统中的发电负荷。
13、平均额定电压是约定的,较线路额定电压约高5%的电压系列。
14、各个量基准值的关系:
SB=
UBIB,UB=
IBZB。
三
1、调整潮流的手段有:
串联电容、串联电抗、附加串联加压器。
2、串联电容的作用是以其电抗抵偿线路的感抗。
3、串联电抗的作用与串联电容相反,主要在限流,将其串联在重载线段上可避免该线段过载。
4、附加串联加压器的作用在于产生一环流或强制循环功率,使强制循环功率与自然分布功率的叠加可达到理想值。
5、辐射形配电网的接线方式分为辐射式、链式、干线式三种网络。
1、电压降落是指线路始末两端电压的相量差。
2、电压损耗是指线路始末两端电压的数量差。
3、电压调整是指线路末端空载与负载时的数量差。
4、最大负荷利用小时数Tmax指一年中负荷消费的电能W除以一年中的最大负荷Pmax。
5、年负荷率指一年中负荷消费的电能w除以最大负荷Pmax与一年的8760h的乘积。
6、年负荷损耗率指全年电能损耗除以最大负荷时的功率损耗与一年8760h的乘积。
7、最大负荷损耗时间是指全年电能损耗除以最大负荷时的功率损耗。
8、线损率或网损率是指线路上损耗的电能与线路始端输入电能的比值。
9、等值负荷功率,即负荷从网络吸取的功率,就可看作为具有负值的变电所节点注入功率。
10、高压输电线路的组空往往远小于电抗,改变电力网络中节点电压的大小,所能改变的主要是网络中无功功率的分布;
改变电压的相位,所能改变的主要是网络中有功功率的分布。
11、辐射形网络中的潮流是不加控制也无法控制的,它们完全取决于各负荷点的负荷,环形网络中,环式网络的潮流,如不采取附加措施,就按阻抗分布,因而也是无法控制的。
两端供电网络的潮流虽可借调整两端电源的功率或电压适当控制,但由于两端电源容量有一定的限制,而电压调整的范围又要服从对电压质量的要求,调整幅度都不可能大。
12、辐射形配电网潮流计算的特点:
(1)辐射形配电网支路数一定小于节点数。
因此,网络节点导纳矩阵稀疏度很高。
(2)低压配电网由于线路阻抗大,一般不满足R<
<
X,因此通常不能采用P-Q解耦法进行网络潮流计算。
(3)对于末端负荷节点前的支路功率就是末端运算负荷功率,所以可以直接求支路功率损耗和电压损耗。
13、进行环形网络潮流计算时,有功功率分点和无功功率分点不一致,应以哪一分点作计算的起点?
答:
鉴于较高电压级网络中,电压损耗主要系无功功率流动所引起,无功功率分点电压往往低于有功功率分点,一般可以无功功率分点为计算的起点。
14、进行环形网络潮流计算时,如果已知的是电源端电压而不是功率分点电压,应按什么电压算起?
答:
要设网络中各点电压均为额定电压,先计算各线段功率损耗,求得电源端功率后,再运用已知的电源端电压和求得的电源端功率计算各线段电压降落。
15、任意辐射形网络潮流计算的步骤:
网络中变电站较多时,先求出等值负荷功率或运算负荷,然后在计算线路各支路的电压降落和功率损耗。
而对既给定末端负荷有给定始端电压的情况,开始时由末端向始端推算时,设全网电压都为额定电压,仅计算各元件中的功率损耗而不计算电压降落,待求得始端功率后,再运用给定的始端电压和求得的始端功率由始端向末端逐段推算电压降落,但这时不再重新计算功率损耗。
四
1.节点导纳矩阵的特点
(1)、节点导纳矩阵是方阵,其阶数就等于网络中除参考节点外的节点数n.
(2)、节点导纳矩阵是稀疏矩阵,其各行非零非对角元数就等于与该行相对应节点所连接的不接地支路数。
(3)、节点导纳矩阵的对角元就等于各该节点所连接导纳的总和。
(4)、节点导纳矩阵的非对角元Yij等于连接节点i、j支路的导纳的负值。
(5)、节点导纳矩阵一般是对称矩阵,这是网络的互易特性所决定的。
2.变量的分类及各自概念
根据各个节点的已知量的不同,将节点分为三类:
PQ节点、PV节点、平衡节点。
(1)、PQ节点:
注入功率Pi和Qi已知,节点电压的大小Ui和相位角待求,负荷节点或发固定功率的发电机节点,数量最多。
(2)、PV节点:
Pi和Ui已知,Qi和相位角待求,对电压有严格要求的节点,如电压中枢点。
(3)、平衡节点:
Ui和相位角已知,Pi、Qi待求,只设一个。
3.设置平衡节点的目的
(1)、在结果未出来之前,网损是未知的,至少需要一个节点的功率不能给定,用来平衡全网功率。
(2)、电压计算需要参考节点。
:
点、平衡节点。
(是对称矩阵,这事于网络中除参考哦
4.雅可比矩阵的特点
(1)、雅可比矩阵各元素均是节点电压相量的函数,在迭代过程中,各元素的值将随着节点电压相量的变化而变化。
因此,在迭代的过程中要不断重新计算雅可比矩阵各元素的值;
(2)、雅可比矩阵各非对角元素均与Yij=Gij+jBij有关,当Yij=0,这些非对角元素也为0,将雅可比矩阵进行分块,每块矩阵元素均为2*2阶子阵,分块矩阵与节点导纳矩阵有相同的稀疏性结构;
(3)、非对称矩阵。
5.牛顿—拉夫逊法潮流计算的基本步骤
(1)、形成节点导纳矩阵YB。
(2)、设各节点电压的初值。
(3)、将各节点电压的初值代入修正方程式求不平衡量。
(4)、计算雅可比矩阵各元素。
(5)、解修正方程式,求各节点电压的变化量。
(6)、计算各节点电压的新值。
(7)、运用各节点电压的新值自第三步开始进入下一步迭代。
(8)、计算平衡节点功率和线路功率。
6.P—Q分解法潮流计算的基本步骤
(1)、形成系数矩阵B’、B’’,并求其逆阵。
(3)、按式计算有功功率的不平衡量。
(4)、解修正方程式,求各节点电压相位角的变化量。
(5)、求各节点电压相位角的新值。
(6)、按式计算无功功率的不平衡量。
(7)、解修正方程式,求各节点电压大小的变化量。
(8)、求各节点电压大小的新值。
(9)、运用各节点电压的新值自第三步开始进入下一次迭代。
(10)、计算平衡节点功率和线路功率。
五
一.电力系统中有功功率的平衡
1.电力系统的负荷构成
第一种,变动幅度很小,周期很短,这种负荷变动有很大偶然性。
第二种,变动幅度较大,周期较长,属于这一种的主要有电炉、压延机械、电气机车等带有冲击性的负荷变动。
第三种,变动幅度最大,周期最长,这一种是由于生产、生活、气象等变化引起的负荷变动。
2.电力系统的有功功率和频率调整分类及各自概念
可分为一次、二次、三次调整三种:
一次调整:
发电机的调速器进行的、对第一种负荷变动引起的频率偏移的调整。
二次调整:
发电机的调频器进行的、对第二种负荷变动引起的频率偏移的调整。
三次调整:
按最优化准则分配第三种有规律变动的负荷。
3.系统电源容量和备用容量的概念
系统电源容量:
可投入发电设备的可发功率之和。
备用容量:
系统电源容量大于发电负荷的部分。
4.备用容量的分类及各自概念
按作用分:
.
(1)负荷备用:
指调整系统中短时的负荷波动并担负计划外的负荷增加而设置的备用(2%~5%)。
(2)事故备用:
使电力用户在发电设备发生偶然性事故时不受严重影响,维持系统正常供电所需的备用(5%~10%)。
(3)检修备用:
使系统中的发电设备能定期检修而设置的备用。
(4)国民经济备用:
计及负荷的超计划增长而设置的备用。
按存在形式分:
(1)热备用:
指运转中的发电设备可能发的最大功率与系统发电负荷之差。
(2)冷备用:
指未运转的发电设备可能发的最大功率。
二.电力系统中有功功率的最优分配
1.电力系统中的有功功率最优分配包括的内容及各自概念
包括:
有功功率电源的最优组合和有功功率负荷的最优分配。
有功功率电源的最优组合概念:
系统中发电设备和发电厂的合理组合。
机组的最优组合顺序,机组的最优组合数量,机组的最优开停时间。
有功功率负荷的最优分配概念:
系统中的有功负荷在各个正在运行的发电设备或发电厂之间的合理分配。
2.发电机组的耗量特性
(1).概念:
反映发电机组单位时间内能量输入和输出关系的曲线。
(2).比耗量:
耗量特性曲线上某点的纵坐标和横坐标之比,及输入和输出之比:
u=F/P
(3).效率:
比耗量倒数:
n=P/F
(4).耗量微增率:
耗量特性曲线上某点切线的斜率,表示在该点的输入增量和输出增量之比:
a=dF/dP
3.目标函数和约束条件
有功负荷最优分配的目的:
在满足对一定量负荷持续供电的前提下,使发电设备在生产电能的过程中单位时间内消耗的能源最少。
满足条件:
等式约束f(x、u、d)=0
不等式约束g(x、u、d)<
=0
使:
目标函数F=F(x、u、d)最优
(1).目标函数
系统单位时间内消耗的燃料(火电机组)
F∑=F1(PG1)+F2(PG2)+…+Fn(PGn)=∑Fi(PGi),式中,Fi(PGi)表示某发电设备发出有功功率PGi时单位时间内所需消耗的能源。
(2).约束条件
等式约束:
∑PGi(min)=∑PLDj+……PL为网络总损耗
不计网损时:
∑PGi(min)=∑PLDj
不等式约束:
PGi(min)<
=PGi<
=PGi(max)
QGi(min)<
=QGi<
=QGi(max)
Ui(min)<
=Ui<
=Ui(max)
4.等耗量微增率准则
dF1/dPG1=dF2/dPG2
5.多个发电厂间的负荷经济分配(不计网损的有功最优分配)
(1)目标函数:
F=∑Fi(PGi)最小
(2)等式约束条件:
∑PGi-PLD=0
构造拉格朗日函数:
L=F-a(∑PGi-PLD)求拉格朗日函数的无条件极值得:
dFi/dPGi=a(i=1,2,…,n)
(3)功率上下限约束条件:
先不考虑该约束条件进行经济分配计算,若发现越限,越限的发电厂按极限分配负荷,其余发电厂再按经济分配。
三.电力系统的频率调整
1.电力系统频率变化的影响:
.对用户的影响:
(1).对异步电机转速的影响:
纺织工业、造纸工业。
(2).异步电机功率下降
(3).对电子设备的准确度的影响
.对发电厂和电力系统的影响
(1).对发电厂厂用机械设备运行的影响
(2).对汽轮机叶片的影响
(3).对异步电机及变压器励磁的影响,增加无功消耗。
2.负荷的有功功率—频率静态特性
当频率偏离额定值不大时,负荷的有功功率—频率静态特性用一条近似直线来表示。
直线的斜率为负荷的单位调节功率。
负荷的单位调节功率:
有名值:
KL=△PL/△f
标幺值:
KL*=△PLfN/PLN△f=KLfN/PLN
意义:
表示随频率的变化负荷消耗功率增加或减少的多少。
3.发电机组的有功功率—频率静态特性
(1).发电机的单位调节功率:
发电机组原动机或电源频率特性的斜率。
KG=-△PG/△f
KG*=-△PGfN/PGN△f=KGfN/PGN
(2).发电机的调差系数:
单位调节功率的倒数。
x=-△f/△PG
x%=(-PGN△f/△PGfN)*100
(3).发电机的单位调节功率与调差系数的关系:
KG*=100/x%
KG=1/x=100PGN/fNx%
4.频率的一次调整
(1).概念:
由于负荷突增,发电机组功率不能及时变动而使机组减速,系统频率下降,同时,发电机组功率由于调速器的一次调整作用而增大,负荷功率因其本身的调节效应而减少,经过一个衰减的震荡过程,达到新的平衡。
(2).系统的单位调节功率:
计及发电机和负荷的调节效应时,引起频率单位变化时的负荷增量。
对于系统有若干台机组参加一次调频:
Ks=∑KG+KL=-△PL0/△f
(3).注意:
取功率的增大或频率的上升为正;
为保证调速系统本身运行的稳定,不能采用过大的单位调节功率;
对于满载机组,不再参加调整。
5.频率的二次调整
通过操作调频器,使发电机组的频率特性平行的移动,从而使负荷变化引起的频率偏移在允许的波动范围内。
(2).当系统负荷增加时,负荷增量可分解为以下三部分:
a.由于进行二次调整,发电机组增发的功率△PG;
b.由于调速器的调整作用而增大的发电机组的功率-KG△f;
c.由于负荷本身的调节效应而减少的负荷功率KL△f。
(3).系统的单位调节功率:
对于系统有n台机组,且由第n台机组担负二次调频的任务时:
Ks=∑KG+KL=-(△PL0-△PG0)/△f
(4).无差调节概念:
若△PL0=△PG0,即发电机组如数增发了负荷功率的原始增量,则△f=0,即所谓的无差调节。
六
一.电力系统的无功功率平衡
1.频率调整和电压调整的相同点和不同点:
调频:
正常稳态运行时,全系统频率相同,频率调整集中在发电厂,调频手段只有调整原动机功率一种。
调压:
电压水平全系统各点不同,电压调整可分散进行,调压手段多种多样。
2.变压器和电力线路中的无功功率损耗是怎样的?
变压器:
分为两部分,即励磁支路损耗和绕组漏抗中损耗。
其中,励磁支路损耗的百分值基本上等于空载电流的百分值,约为1%~2%;
绕组漏抗中损耗,在变压器满载时,基本上等于短路电压的百分值,约为10%。
因此,对一台变压器或一级变压的网络而言,在额定满载下运行时,无功功率损耗将达额定容量的13%。
对多电压级网络而言,变压器中无功功率损耗是相当可观的。
电力线路:
分为两部分,并联电纳和串联电抗中的无功功率损耗。
并联电纳中的损耗与线路电压的平方成正比,呈容性;
串联电抗中的损耗与负荷电流的平方成正比,呈感性。
因此,线路究竟消耗容性或感性无功功率不能肯定。
一般情况下,35kv及以下系统消耗无功功率;
110kv及以上系统,轻载或空载时,成为无功电源,传输功率较大时,消耗无功功率。
3.无功功率电源有哪些?
各自特点?
发电机、同步调相机、静电电容器、及静止补偿器,后三种又称为无功补偿装置。
同步调相机:
相当于只能发无功功率的发电机。
在过励磁运行时,它向系统供给感性无功功率而起无功电源的作用,能提高系统电压;
在欠励磁运行时从系统吸取感性无功功率而起无功负荷的作用,可降低系统电压。
静电电容器:
只能向系统供应感性无功功率,它所供给的感性无功功率与其端电压的平方成正比。
静止补偿器:
由静电电容器和电抗器并联组成。
电容器可发出无功功率,电抗器可吸收无功功率,两者结合起来,再配以适当的调节装置,就能够平滑的改变输出或吸收的无功功率。
4.电力系统无功功率平衡的基本要求:
系统中的无功电源可以发出的无功功率应该大于或至少等于负荷所需的无功功率和网络中的无功损耗。
∑QGC-∑QL-△Q∑=Qres
Qres>
0表示系统中的无功功率可以平衡且有适量的备用;
Qres<
0表示系统中的无功功率不足,应考虑加设无功补偿装置。
其中:
电源供应的无功功率QGC由两部分构成,即发电机供应的无功功率QG和补偿设备供应的无功功率Qc。
即∑QGC=∑QG+∑Qc
无功功率损耗△Q∑包括三部分:
变压器中的无功功率损耗△Qt,线路电抗中的无功功率损耗△Qx,线路电纳中的无功功率损耗△Qb,由于△Qb属容性,将其作为感性无功功率损耗论处,则应具有负值。
即△Q∑=△Qt+△Qx-△Qb
5.无功不足应采取的措施:
(1)、要求各类用户将负荷的功率因数提高到现行规程规定的数值。
(2)、挖掘系统的无功潜力。
例如将系统中暂时闲置的发电机改作调相机运行;
动员用户的同步电动机过励磁运行等。
(3)、根据无功平衡的需要,增添必要的无功补偿容量,并按无功功率就地平衡的原则进行补偿容量的分配。
小容量的、分散的无功补偿可采用静电电容器;
大容量的、配置在系统中枢点的无功补偿则宜采用同步调相机或静止补偿器。
二.电力系统无功功率的最优分布
1.无功功率的最优分布包括:
无功功率电源的最优分布和无功功率负荷的最优补偿
2.无功功率电源的最优分布.
优化无功电源分布的目的:
在有功负荷分布已确定的前提下,调整无功电源之间的负荷分布,使有功网损达到最小。
其中,网络的有功网损可表示为节点注入功率的函数。
目标函数:
网络的有功网损△P∑=△P∑(P1,P2,…,Pn,Q1,Q2,…,Qn)最小
等约束条件:
∑QGi-∑QLi-△Q∑=0
不等约束条件:
构造拉格朗日函数L=△P∑-a(∑QGi-△Q∑-∑QLi)=0
分别对QGi和a并令其等于零得到结果。
三.电力系统的电压调整
1.电压调整的必要性:
(1).电压偏移过大对电力系统本身及用电设备会带来不良的影响。
a.效率下降,经济性变差。
b.电压过高,照明设备寿命下降,影响绝缘。
c.电压过低,电机变热。
d.系统电压崩溃。
(2).不可能使所有节点电压都保持为额定值。
a.设备及线路压降。
b.负荷波动。
c.运行方式改变。
d.无功不足或过剩。
2.我国规定的允许电压偏移
35kv及以上电压供电负荷:
-5%~+5%
10kv及以下电压供电负荷:
-7%~7%
低压照明负荷:
-10%~+5%
农村电网:
-10%~+7.5%
注:
故障情况下,电压偏移较正常时再增大5%,但正偏移不能超过10%。
3.中枢点的电压管理
(1).什么是电压中枢点?
电压中枢点系值那些可反映系统电压水平的主要发电厂或枢纽变电所母线。
因很多负荷都由这些中枢点供电,如能控制住这些点的电压偏移,也就控制住了系统中中大部分负荷的电压偏移。
于是,电力系统的电压调整问题也就转化为保证各电压中枢点的电压偏移不越出给定范围的问题。
(2).如何选择电压中枢点?
一般可选择下列母线作为电压中枢点:
a.大型发电厂的高压母线;
b.枢纽变电所的二次母线;
c.有大量地方性负荷的发电厂低压母线。
(3).中枢点电压的允许波