面包板使用方法Word格式.docx

上传人:b****6 文档编号:17505432 上传时间:2022-12-06 格式:DOCX 页数:11 大小:348.21KB
下载 相关 举报
面包板使用方法Word格式.docx_第1页
第1页 / 共11页
面包板使用方法Word格式.docx_第2页
第2页 / 共11页
面包板使用方法Word格式.docx_第3页
第3页 / 共11页
面包板使用方法Word格式.docx_第4页
第4页 / 共11页
面包板使用方法Word格式.docx_第5页
第5页 / 共11页
点击查看更多>>
下载资源
资源描述

面包板使用方法Word格式.docx

《面包板使用方法Word格式.docx》由会员分享,可在线阅读,更多相关《面包板使用方法Word格式.docx(11页珍藏版)》请在冰豆网上搜索。

面包板使用方法Word格式.docx

 

插入面包板上孔内引脚或导线铜芯直径为0.4~0.6mm,即比大头针的直径略微细一点。

元器件引脚或导线头要沿面包板的板面垂直方向插入方孔,应能感觉到有轻微、均匀的摩擦阻力,在面包板倒置时,元器件应能被簧片夹住而不脱落。

面包板应该在通风、干燥处存放,特别要避免被电池漏出的电解液所腐蚀。

要保持面包板清洁,焊接过的元器件不要插在面包板上。

3.面包板实验套材

电子控制电路基本实验所用的元器件包括:

电池组2组(3V、6V,带电池卡、电极引线)。

面包板(SYB-130或118、SYB—46型)。

电阻器27只(47Ω、100Ω、390Ω×

8、1kΩ×

6、2.2kΩ×

5、3.3kΩ、10kΩ、15kΩ、47kΩ、330kΩ、2.2MΩ),小型直滑电位器(47kΩ),电容器7只(1000pF、0.022μF、47μF、100μF×

2,220μF×

2)。

光敏电阻器(MG45-1),光电二极管,开关二极管(1N4148),发光二极管4只(红、绿、黄、橙),三极管4只(8050、9013×

2、9014),数码管(LC5011)。

数字集成电路10块(74LS00、74LS02、74LS04、74LS08、74LS32、74LS73、74LS74、74LS86、4511、4518)。

继电器(JRC-21F),双金属复片(启辉器),磁控开关1套(条形磁铁、干簧管开关),压电陶瓷片(φ27mm,带共鸣壳体),电子蜂鸣器(3V或6V),小电灯1个(3.8V),玩具直流电动机(3V,带小螺旋桨)。

接钮开关2个,导线若干和元器件盘。

此外,还需要准备常用的工具,如镊子、桃形钳和一字小改锥,自选实验所需添加的一些元器件等。

二、面包板实验入门

实验是通向科学成功的桥梁,正是由于实验造就了19世纪最伟大的实验物理学家、实验大师M·

法拉第,为近代物理的发展奠定了基础。

在了解面包板的构造之后,通过面包板电路搭接实验来了解其使用的方法。

1.省电指示灯电路

图2为省电指示灯电路,它由电池组GB(6V)、按钮开关SB、限流电阻器R(390Ω)、红色发光二极管和导线组成。

电池组用4节5号电池串联而成,开关选用电铃按钮开关,接线用1芯导线,电阻器上面的四条色环为橙色、白色、棕色及金色,标称阻值为390Ω,允许偏差±

5%。

发光二极管采用直径3mm的红色发光二极管。

限流电阻器R为390Ω时,发光二极管中电流约10mA,亮度已经很高了。

如用高亮度发光二极管,限流电阻器可以适当加大(1k~3.9kΩ),工作电流仅为1~3mA,成为名副其实的省电指示灯电路。

图2

看起来图2省电指示灯电路很简单,在面包板上搭接电路却是新的尝试,需要掌握在面包板上连接电路的方法,了解电阻器和发光二极管的使用方法,迈出面包板电路实验的第一步。

建议初学者使用SYB—46型面包板,按图3示范连接方法进行实验。

常见的错误是把电阻器、发光二极管的两条管脚插在同一列的5个方孔内造成短路,或者发光二极管正负极管脚接反。

图3

在初步掌握省电指示灯电路面包板连接后,不妨在电路中再串联一只发光二极管,连成图4、图5所示的两种不同的串联方法。

图4

图5

图6为并联电路,可以把它视作两路省电指示灯电路,只是共用一只电阻器。

在面包板上连接并联电路时,一路省电指示灯电路搭接点亮之后,再连接第二路,连接示意图见图7。

其特点是各元器件连接紧凑,节省面包板使用面积,在插接元器件较多时具有实用的意义。

如果每只发光二极管各串联一只电阻器,特别是发光颜色不同的发光二极管,两路指示灯就不会互相牵制了。

如果把发光二极管串联的开关、电阻器互相换个位置,都能把相应的电路搭接出来,说明已经初步掌握了面包板电路搭接的方法。

要重视在实验操作过程中培养技巧能力,而不仅仅是得到实验现象的结果。

图6

图7

2.电码模拟器

电码是一种电报通信用以传输字母、数字和标点等的代表符号。

1838年,美国科学家S·

莫尔斯发明了由点和划两个符号组合而成的电码,这就是在电报通信中广泛应用的莫尔斯电码。

1844年,建成通信线路开始通电报,揭开人类通信历史上的新篇章。

图8所示的电路是收发电码的简易模拟器,它分为左右两个独立的带按钮开关的讯响器。

在一块面包板上搭接左边的讯响器电路。

注意蜂鸣器端面上的正极标志,相应一侧的管脚(长管脚)为正极,在插接蜂鸣器时,正极与电源正极相连。

再用另一块面包板来搭接右边的电路,最后将两块面包板上最上行X长条簧片用长导线连接起来,最下行Y长条簧片连接起来,形成通信线路,进行电码收发报练习。

通过电码模拟器实验,在面包板上搭接“声光讯响器”,熟悉电路的并联,了解国际电码表及电报通信,增强面包板实验的兴趣。

图8

附表为数码读音及电码符号表。

1~9和0这10个数字是用“短码”或“长码”的电码符号来传递的,而这些电码符号都是由点“·

”和划“-”组成的。

电码表中的“·

”口读为“的”(di),读时发音要短促清脆,“-”口读为“达”(dá

),读时要均匀平稳。

在进行电码发报按键(按钮开关)练习时,按键时间短的产生“·

”的电码信号,蜂鸣器发出短促清脆“的”的声音,按键长时,产生响亮“-”的持续声。

通常“-”的发声时间是“·

”发声时间的3倍,“·

”和“-”或“-”和“·

”之间间歇的时间是一个“·

”的发声时间。

在发两个数字电码信号之间要留出3个“·

”的不按电键的间歇时间,也就是一个“-”的间歇时间,以示区分开两个数字电码,一组电码与另一组电码之间间歇的时间为5个“·

”不间断的发声时间。

当甲方发出自己生日日期的电码信号,乙方根据接收的电码信号译出甲方的生日日期,完成电码收发练习。

附表数码读音及电码符号表

3.电容器的充电及放电作用

1745年,荷兰莱顿大学P·

穆森布罗克发明“莱顿瓶”,这是一种最原始的电容器,在玻璃瓶内外贴上金属箔作为板极,这样就构成了由两个金属板相互靠近并用玻璃介质绝缘的电容器。

顾名思义,电容器最主要的特征是能够存储电荷,具有充电和放电作用,并有隔断直流电和允许交流电通过的能力。

通过图9所示的电容器的充电与放电电路来了解电容器的使用方法;

观察电容器的充、放电现象;

实验定时电阻器、电容器的时间常数对电容器充电、放电的影响。

图9

在图9的实验电路中,电容器C1(220μF)和C2(220μF)并联,总电容量等于两个电容器的电容量之和(440μF)。

电路左方由电源GB、按钮开关SB1、电阻器R1和并联的电容器C1、C2组成RC(阻容)充电电路,充电电流由红色发光二极管的发光亮度显示出来。

当SB1闭合接通电源瞬间,红色发光二极管闪亮一次。

R1的电阻值越大,红色发光二极管瞬间电流(最大电流)越小,向电容器充电的时间越长。

在向电容器充电的过程中,充电电流和电压的变化见图10。

图10

在图9电路中,右方为电容器的放电电路,由SB2、R2、绿色发光二极管和并联的电容器C1、C2组成。

当C1、C2充足电后,断开SB1,电容器C1、C2与电源GB脱离,这时再按下SB2,绿色发光二极管发生闪亮现象,这是由于电容器C1、C2存储的电荷放电造成的,说明电容器能够存储电荷。

电容器放电时,随着电容器中存储的电荷不断减少,其两端电压急剧减小,放电电流也随之按指数规律急剧减小,其电容器两端电压、放电电流变化与图10充电电流变化曲线一样。

显然,电阻器R的电阻值与充电电容器C的电容量两者的乘积R·

C越大,充放电所需要的时间也越长,因此把R·

C叫做阻容充放电电路的时间常数,用希腊字母τ来表示,即

τ=R·

C

当电阻的单位为欧姆,电容的电容量为法拉时,τ的单位为秒。

在图9电路中,R=1kΩ,C=440μF时,τ=1×

103×

440×

10-6=0.44(秒)。

在实验时,发光二极管为什么只能瞬间闪亮,通过计算时间常数τ就可以得到证明。

电容器充放电电路面包板连接示意见图11,在面包板左下角进行连接。

电容器选用工作电压10~16V的小型电解电容器,由于其体积较大,在面包板上要留有一定的空间,并需要一条导线将两个电容器的正极并联在一起。

电解电容器在使用时要注意极性,长引脚为正极,短引脚为负极,通常电容器壳体负极引脚一侧有“-”的标志。

图11

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高中教育 > 高中教育

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1