数学史上的三次危机Word下载.docx
《数学史上的三次危机Word下载.docx》由会员分享,可在线阅读,更多相关《数学史上的三次危机Word下载.docx(7页珍藏版)》请在冰豆网上搜索。
诱发第一次数学危机的一个间接因素是之后“芝诺悖论”的出现,它更增加了数学家们的担忧:
数学作为一门精确的科学是否还有可能?
宇宙的和谐性是否还存在?
在大约公元前370年,这个矛盾被毕氏学派的欧多克斯通过给比例下新定义的方法解决了。
他的处理不可通约量的方法,出现在欧几里得《原本》第5卷中,并且和狄德金于1872年绘出的无理数的现代解释基本一致。
今天中学几何课本中对相似三角形的处理,仍然反映出由不可通约量而带来的某些困难和微炒之处。
第一次数学危机表明,几何学的某些真理与算术无关,几何量不能完全由整数及其比来表示。
反之,数却可以由几何量表示出来。
整数的尊祟地位受到挑战,古希腊的数学观点受到极大的冲击。
于是,几何学开始在希腊数学中占有特殊地位。
同时也反映出,直觉和经验不一定靠得住,而推理证明才是可靠的。
从此希腊人开始从“自明的”公理出发,经过演绎推理,并由此建立几何学体系。
这是数学思想上的一次革命,是第一次数学危机的自然产物。
回顾在此以前的各种数学,无非都是“算”,也就是提供算法。
即使在古希腊,数学也是从实际出发,应用到实际问题中去的。
例如,泰勒斯预测日食、利用影子计算金字塔高度、测量船只离岸距离等等,都是属于计算技术范围的。
至于埃及、巴比伦、中国、印度等国的数学,并没有经历过这样的危机和革命,也就继续走着以算为主,以用为主的道路。
而由于第一次数学危机的发生和解决,希腊数学则走上完全不同的发展道路,形成了欧几里得《原本》的公理体系与亚里士多德的逻辑体系,为世界数学作出了另一种杰出的贡献。
但是,自此以后希腊人把几何看成了全部数学的基础,把数的研究隶属于形的研究,割裂了它们之间的密切关系。
这样做的最大不幸是放弃了对无理数本身的研究,使算术和代数的发展受到很大的限制,基本理论十分薄溺。
这种畸形发展的局面在欧洲持续了2019多年。
二、第二次数学危机
十七、十八世纪关于微积分发生的激烈的争论,被称为第二次数学危机。
从历史或逻辑的观点来看,它的发生也带有必然性。
这次危机的萌芽出现在大约公元前450年,芝诺注意到由于对无限性的理解问题而产生的矛盾,提出了关于时空的有限与无限的四个悖论:
“两分法”:
向着一个目的地运动的物体,首先必须经过路程的中点,然而要经过这点,又必须先经过路程的1/4点……,如此类推以至无穷。
——结论是:
无穷是不可穷尽的过程,运动是不可能的。
“阿基里斯(《荷马史诗》中的善跑的英雄)追不上乌龟”:
阿基里斯总是首先必须到达乌龟的出发点,因而乌龟必定总是跑在前头。
这个论点同两分法悖论一样,所不同的是不必把所需通过的路程一再平分。
“飞矢不动”:
意思是箭在运动过程中的任一瞬时间必在一确定位置上,因而是静止的,所以箭就不能处于运动状态。
“操场或游行队伍”:
A、B两件物体以等速向相反方向运动。
从静止的c来看,比如说A、B都在1小时内移动了2公里,可是从A看来,则B在1小时内就移动了4公里。
运动是矛盾的,所以运动是不可能的。
芝诺揭示的矛盾是深刻而复杂的。
前两个悖论诘难了关于时间和空间无限可分,因而运动是连续的观点,后两个悖论诘难了时间和空间不能无限可分,因而运动是间断的观点。
芝诺悖论的提出可能有更深刻的背景,不一定是专门针对数学的,但是它们在数学王国中却掀起了一场轩然大被。
它们说明了希腊人已经看到“无穷小”与“很小很小”的矛盾,但他们无法解决这些矛盾。
其后果是,希腊几何证明中从此就排除了无穷小。
经过许多人多年的努力,终于在17世纪晚期,形成了无穷小演算——微积分这门学科。
牛顿和莱布尼兹被公认为微积分的奠基者,他们的功绩主要在于:
把各种有关问题的解法统一成微分法和积分法;
有明确的计算步骤;
微分法和积分法互为逆运算。
由于运算的完整性和应用的广泛性,微积分成为当时解决问题的重要工具。
同时,关于微积分基础的问题也越来越严重。
关键问题就是无穷小量究竞是不是零?
无穷小及其分析是否合理?
由此而引起了数学界甚至哲学界长达一个半世纪的争论,造成了第二次数学危机。
无穷小量究竟是不是零?
两种答案都会导致矛盾。
牛顿对它曾作过三种不同解释:
1669年说它是一种常量;
1671年又说它是一个趋于零的变量;
1676年它被“两个正在消逝的量的最终比”所代替。
但是,他始终无法解决上述矛盾。
莱布尼兹曾试图用和无穷小量成比例的有限量的差分来代替无穷小量,但是他也没有找到从有限量过渡到无穷小量的桥梁。
英国大主教贝克莱于1734年写文章,攻击流数(导数)“是消失了的量的鬼魂……能消化得了二阶、三阶流数的人,是不会因吞食了神学论点就呕吐的。
”他说,用忽略高阶无穷小而消除了原有的错误,“是依靠双重的错误得到了虽然不科学却是正确的结果”。
贝克莱虽然也抓住了当时微积分、无穷小方法中一些不清楚不合逻辑的问题,不过他是出自对科学的厌恶和对宗教的维护,而不是出自对科学的追求和探索。
当时一些数学家和其他学者,也批判过微积分的一些问题,指出其缺乏必要的逻辑基础。
例如,罗尔曾说:
“微积分是巧妙的谬论的汇集。
”在那个勇于创造时代的初期,科学中逻辑上存在这样那样的问题,并不是个别现象。
18世纪的数学思想的确是不严密的、直观的,强调形式的计算而不管基础的可靠。
其中特别是:
没有清楚的无穷小概念,从而导数、微分、积分等概念不清楚;
无穷大概念不清楚;
发散级数求和的任意性等等;
符号的不严格使用;
不考虑连续性就进行微分,不考虑导数及积分的存在性以及函数可否展成幂级数等等。
直到19世纪20年代,一些数学家才比较关注于微积分的严格基础。
从波尔查诺、阿贝尔、柯西、狄里赫利等人的工作开始,到威尔斯特拉斯、狄德金和康托的工作结束,中间经历了半个多世纪,基本上解决了矛盾,为数学分析奠定了一个严格的基础。
波尔查诺给出了连续性的正确定义;
阿贝尔指出要严格限制滥用级数展开及求和;
柯西在1821年的《代数分析教程》中从定义变量出发,认识到函数不一定要有解析表达式;
他抓住极限的概念,指出无穷小量和无穷大量都不是固定的量而是变量,无穷小量是以零为极限的变量;
并且定义了导数和积分;
狄里赫利给出了函数的现代定义。
在这些工作的基础上,威尔斯特拉斯消除了其中不确切的地方,给出现在通用的极限的定义,连续的定义,并把导数、积分严格地建立在极限的基础上。
19世纪70年代初,威尔斯特拉斯、狄德金、康托等人独立地建立了实数理论,而且在实数理论的基础上,建立起极限论的基本定理,从而使数学分析建立在实数理论的严格基础之上。
三、第三次数学危机
数学基础的第三次危机是由1897年的突然冲击而出现的,从整体上看到现在还没有解决到令人满意的程度。
这次危机是由于在康托的一般集合理论的边缘发现悖论造成的。
由于集合概念已经渗透到众多的数学分支,并且实际上集合论已经成了数学的基础,因此集合论中悖论的发现自然地引起了对数学的整个基本结构的有效性的怀疑。
1897年,福尔蒂揭示了集合论的第一个悖论;
两年后,康托发现了很相似的悖论,它们涉及到集合论中的结果。
1902年,罗素发现了一个悖论,它除了涉及集合概念本身外不涉及别的概念。
罗素,英国人,哲学家、逻辑学家、数学家。
1902年著述《数学原理》,继而与怀德海合著《数学原理》(1910年~1913年),把数学归纳为一个公理体系,是划时代的著作之一。
他在很多领域都有大量著作,并于1950年获得诺贝尔文学奖。
他关心社会现象,参加和平运动,开办学校。
1968~1969年出版了他的自传。
罗素悖论曾被以多种形式通俗化,其中最著名的是罗索于1919年给出的,它讲的是某村理发师的困境。
理发师宣布了这样一条原则:
他只给不自己刮胡子的人刮胡子。
当人们试图答复下列疑问时,就认识到了这种情况的悖论性质:
“理发师是否可以给自己刮胡子?
”如果他给自己刮胡子,那么他就不符合他的原则;
如果他不给自己刮胡子,那么他按原则就该为自己刮胡子。
罗素悖论使整个数学大厦动摇了,无怪乎弗雷格在收到罗素的信之后,在他刚要出版的《算术的基本法则》第2卷本末尾写道:
“一位科学家不会碰到比这更难堪的事情了,即在工作完成之时,它的基础垮掉了。
当本书等待付印的时候,罗素先生的一封信把我就置于这种境地”。
狄德金原来打算把《连续性及无理数》第3版付印,这时也把稿件抽了回来。
发现拓扑学中“不动点原理”的布劳恩也认为自己过去做的工作都是“废话”,声称要放弃不动点原理。
自从在康托的集合论和发现上述矛盾之后,还产生了许多附加的悖论。
集合论的现代悖论与逻辑的几个古代悖论有关系。
例如公元前四世纪的欧伯利得悖论:
“我现在正在做的这个陈述是假的”。
如果这个陈述是真的,则它是假的;
然而,如果这个陈述是假的,则它又是真的了。
于是,这个陈述既不能是真的,又不能是假的,怎么也逃避不了矛盾。
更早的还有埃皮门尼德(公元前6世纪,克利特人)悖论:
“克利特人总是说谎的人”。
只要简单分析一下,就能看出这句话也是自相矛盾的。
集合论中悖论的存在,明确地表示某些地方出了毛病。
自从发现它们之后,人们发表了大量关于这个课题的文章,并且为解决它们作过大量的尝试。
就数学而论,看来有一条容易的出路:
人们只要把集合论建立在公理化的基础上,加以充分限制以排除所知道的矛盾。
第一次这样的尝试是策梅罗于1908年做出的,以后还有多人进行了加工。
但是,此程序曾受到批评,因为它只是避开了某些悖论,而未能说明这些悖论;
此外,它不能保证将来不出现别种悖论。
另一种程序既能解释又能排除已知悖论。
如果仔细地检查就会发现:
上面的每一个悖论都涉及一个集合S和S的一个成员M(既M是靠S定义的)。
这样的一个定义被称作是“非断言的”,而非断言的定义在某种意义上是循环的。
例如,考虑罗素的理发师悖论:
用M标志理发师,用S标示所有成员的集合,则M被非断言地定义为“S的给并且只给不自己刮胡子人中刮胡子的那个成员”。
此定义的循环的性质是显然的——理发师的定义涉及所有的成员,并且理发师本身就是这里的成员。
因此,不允许有非断言的定义便可能是一种解决集合论的己知悖论的办法。
然而,对这种解决办法,有一个严重的责难,即包括非断言定义的那几部分数学是数学家很不愿丢弃的,例如定理“每一个具有上界的实数非空集合有最小上界(上确界)”。
解决集合论的悖论的其它尝试,是从逻辑上去找问题的症结,这带来了逻辑基础的全面研究。
从1900年到1930年左右,数学的危机使许多数学家卷入一场大辩论当中。
他们看到这次危机涉及到数学的根本,因此必须对数学的哲学基础加以严密的考察。
在这场大辩论中,原来不明显的意见分歧扩展成为学派的争论。
以罗素为代表的逻缉主义、以布劳威为代表的直觉主义、以希尔伯特为代表的形式主义三大数学哲学学派应运而生。
它们都是唯心主义学派,它们都提出了各自的处理一般集合论中的悖论的办法。
他们在争论中尽管言语尖刻,好象势不两立,其实各自的观点都吸收了对方的看法而又有很多变化。
1931年,哥德尔不完全性定理的证明暴露了各派的弱点,哲学的争论黯淡了下来。
此后,各派力量沿着自己的道路发展演化。
尽管争论的问题远未解决,但大部分数学家并不大关心哲学问题。
直到近年,数学哲学问题才又激起人们的兴趣。
观察内容的选择,我本着先静后动,由近及远的原则,有目的、有计划的先安排与幼儿生活接近的,能理解的观察内容。
随机观察也是不可少的,是相当有趣的,如蜻蜓、蚯蚓、毛毛虫等,孩子一边观察,一边提问,兴趣很浓。
我提供的观察对象,注意形象逼真,色彩鲜明,大小适中,引导幼儿多角度多层面地进行观察,保证每个幼儿看得到,看得清。
看得清才能说得正确。
在观察过程中指导。
我注意帮助幼儿学习正确的观察方法,即按顺序观察和抓住事物的不同特征重点观察,观察与说话相结合,在观察中积累词汇,理解词汇,如一次我抓住时机,引导幼儿观察雷雨,雷雨前天空急剧变化,乌云密布,我问幼儿乌云是什么样子的,有的孩子说:
乌云像大海的波浪。
有的孩子说“乌云跑得飞快。
”我加以肯定说“这是乌云滚滚。
”当幼儿看到闪电时,我告诉他“这叫电光闪闪。
”接着幼儿听到雷声惊叫起来,我抓住时机说:
“这就是雷声隆隆。
”一会儿下起了大雨,我问:
“雨下得怎样?
”幼儿说大极了,我就舀一盆水往下一倒,作比较观察,让幼儿掌握“倾盆大雨”这个词。
雨后,我又带幼儿观察晴朗的天空,朗诵自编的一首儿歌:
“蓝天高,白云飘,鸟儿飞,树儿摇,太阳公公咪咪笑。
”这样抓住特征见景生情,幼儿不仅印象深刻,对雷雨前后气象变化的词语学得快,记得牢,而且会应用。
我还在观察的基础上,引导幼儿联想,让他们与以往学的词语、生活经验联系起来,在发展想象力中发展语言。
如啄木鸟的嘴是长长的,尖尖的,硬硬的,像医生用的手术刀―样,给大树开刀治病。
通过联想,幼儿能够生动形象地描述观察对象。
与当今“教师”一称最接近的“老师”概念,最早也要追溯至宋元时期。
金代元好问《示侄孙伯安》诗云:
“伯安入小学,颖悟非凡貌,属句有夙性,说字惊老师。
”于是看,宋元时期小学教师被称为“老师”有案可稽。
清代称主考官也为“老师”,而一般学堂里的先生则称为“教师”或“教习”。
可见,“教师”一说是比较晚的事了。
如今体会,“教师”的含义比之“老师”一说,具有资历和学识程度上较低一些的差别。
辛亥革命后,教师与其他官员一样依法令任命,故又称“教师”为“教员”。
承认无穷集合、承认无穷基数,就好象一切灾难都出来了,这就是第三次数学危机的实质。
尽管悖论可以消除,矛盾可以解决,然而数学的确定性却在一步一步地丧失。
现代公理集合论中一大堆公理,简直难说孰真孰假,可是又不能把它们都消除掉,它们跟整个数学是血肉相连的。
所以,第三次数学危机表面上解决了,实质上更深刻地以其它形式延续着。
唐宋或更早之前,针对“经学”“律学”“算学”和“书学”各科目,其相应传授者称为“博士”,这与当今“博士”含义已经相去甚远。
而对那些特别讲授“武事”或讲解“经籍”者,又称“讲师”。
“教授”和“助教”均原为学官称谓。
前者始于宋,乃“宗学”“律学”“医学”“武学”等科目的讲授者;
而后者则于西晋武帝时代即已设立了,主要协助国子、博士培养生徒。
“助教”在古代不仅要作入流的学问,其教书育人的职责也十分明晰。
唐代国子学、太学等所设之“助教”一席,也是当朝打眼的学官。
至明清两代,只设国子监(国子学)一科的“助教”,其身价不谓显赫,也称得上朝廷要员。
至此,无论是“博士”“讲师”,还是“教授”“助教”,其今日教师应具有的基本概念都具有了。
数学中的矛盾既然是固有的,它的激烈冲突——危机就不可避免。
危机的解决给数学带来了许多新认识、新内容,有时也带来了革命性的变化。
把20世纪的数学同以前全部数学相比,内容要丰富得多,认识要深入得多。
在集合论的基础上,诞生了抽象代数学、拓扑学、泛函分析与测度论,数理逻辑也兴旺发达成为数学有机体的一部分。
古代的代数几何、微分几何、复分析现在已经推广到高维。
代数数论的面貌也多次改变,变得越来越优美、完整。
一系列经典问题完满地得到解决,同时又产生更多的新问题。
特别是二次大战之后,新成果层出不穷,从来间断。
数学呈现无比兴旺发达的景象,而这正是人们同数学中的矛盾、危机斗争的产物。