利用导数求曲线的切线和公切线.docx

上传人:b****2 文档编号:1742982 上传时间:2022-10-23 格式:DOCX 页数:18 大小:268.56KB
下载 相关 举报
利用导数求曲线的切线和公切线.docx_第1页
第1页 / 共18页
利用导数求曲线的切线和公切线.docx_第2页
第2页 / 共18页
利用导数求曲线的切线和公切线.docx_第3页
第3页 / 共18页
利用导数求曲线的切线和公切线.docx_第4页
第4页 / 共18页
利用导数求曲线的切线和公切线.docx_第5页
第5页 / 共18页
点击查看更多>>
下载资源
资源描述

利用导数求曲线的切线和公切线.docx

《利用导数求曲线的切线和公切线.docx》由会员分享,可在线阅读,更多相关《利用导数求曲线的切线和公切线.docx(18页珍藏版)》请在冰豆网上搜索。

利用导数求曲线的切线和公切线.docx

利用导数求曲线的切线和公切线

利用导数求曲线的切线与公切线

一、求切线方程

【例1】、已知曲线f(x)=x3-2x2+1、

(1)求在点P(1,0)处的切线l1的方程;

(2)求过点Q(2,1)与已知曲线f(x)相切的直线l2的方程、

提醒:

注意就是在某个点处还就是过某个点!

2.有关切线的条数

【例2】.(2014•北京)已知函数f(x)=2x3﹣3x.

(Ⅰ)求f(x)在区间[﹣2,1]上的最大值;

(Ⅱ)若过点P(1,t)存在3条直线与曲线y=f(x)相切,求t的取值范围;

(Ⅲ)问过点A(﹣1,2),B(2,10),C(0,2)分别存在几条直线与曲线y=f(x)相切?

(只需写出结论)

【解答】解:

(Ⅰ)由f(x)=2x3﹣3x得f′(x)=6x2﹣3,

令f′(x)=0得,x=﹣或x=,

∵f(﹣2)=﹣10,f(﹣)=,f()=﹣,f

(1)=﹣1,

∴f(x)在区间[﹣2,1]上的最大值为.

(Ⅱ)设过点P(1,t)的直线与曲线y=f(x)相切于点(x0,y0),

则y0=2﹣3x0,且切线斜率为k=6﹣3,

∴切线方程为y﹣y0=(6﹣3)(x﹣x0),

∴t﹣y0=(6﹣3)(1﹣x0),即4﹣6+t+3=0,设g(x)=4x3﹣6x2+t+3,

则“过点P(1,t)存在3条直线与曲线y=f(x)相切”,等价于“g(x)有3个不同的零点”.∵g′(x)=12x2﹣12x=12x(x﹣1),

∴g(0)=t+3就是g(x)的极大值,g

(1)=t+1就是g(x)的极小值.

∴g(0)>0且g

(1)<0,即﹣3<t<﹣1,

∴当过点过点P(1,t)存在3条直线与曲线y=f(x)相切时,t的取值范围就是(﹣3,﹣1).

(Ⅲ)过点A(﹣1,2)存在3条直线与曲线y=f(x)相切;

过点B(2,10)存在2条直线与曲线y=f(x)相切;

过点C(0,2)存在1条直线与曲线y=f(x)相切.

【例3】.已知函数f(x)=lnax(a≠0,a∈R),.

(Ⅰ)当a=3时,解关于x的不等式:

1+ef(x)+g(x)>0;

(Ⅱ)若f(x)≥g(x)(x≥1)恒成立,求实数a的取值范围;

(Ⅲ)当a=1时,记h(x)=f(x)﹣g(x),过点(1,﹣1)就是否存在函数y=h(x)图象的切线?

若存在,有多少条?

若不存在,说明理由.

【解答】解:

(I)当a=3时,原不等式可化为:

1+eln3x+>0;

等价于,解得x,故解集为

(Ⅱ)∵对x≥1恒成立,所以,

令,

可得h(x)在区间[1,+∞)上单调递减,

故h(x)在x=1处取到最大值,故lna≥h

(1)=0,可得a=1,

故a的取值范围为:

[1,+∞)

(Ⅲ)假设存在这样的切线,设切点T(x0,),

∴切线方程:

y+1=,将点T坐标代入得:

即,①

设g(x)=,则

∵x>0,∴g(x)在区间(0,1),(2,+∞)上就是增函数,在区间(1,2)上就是减函数,

故g(x)极大=g

(1)=1>0,故g(x)极,小=g

(2)=ln2+>0,.

又g()=+12﹣6﹣1=﹣ln4﹣3<0,

由g(x)在其定义域上的单调性知:

g(x)=0仅在(,1)内有且仅有一根,

方程①有且仅有一解,故符合条件的切线有且仅有一条.

【作业1】.(2017•莆田一模)已知函数f(x)=2x3﹣3x+1,g(x)=kx+1﹣lnx.

(1)设函数,当k<0时,讨论h(x)零点的个数;

(2)若过点P(a,﹣4)恰有三条直线与曲线y=f(x)相切,求a的取值范围.

3.切线与切线之间的关系

【例4】.(2018•绵阳模拟)已知a,b,c∈R,且满足b2+c2=1,如果存在两条互相垂直的直线与函数f(x)=ax+bcosx+csinx的图象都相切,则a+c的取值范围就是、

∵b2+c2=1,∴,

∴,

故a+c∈[﹣,],

【例5】、已知函数f(x)=lnx﹣a(x﹣1),g(x)=ex,其中e为自然对数的底数.

(Ⅰ)设,求函数t(x)在[m,m+1](m>0)上的最小值;

(Ⅱ)过原点分别作曲线y=f(x)与y=g(x)的切线l1,l2,已知两切线的斜率互为倒数,

求证:

a=0或.

【解答】(Ⅰ)解:

令t'(x)>0得x>1,令t'(x)<0得x<1,

所以,函数t(x)在(0,1)上就是减函数,在(1,+∞)上就是增函数,

∴当m≥1时,t(x)在[m,m+1](m>0)上就是增函数,∴

当0<m<1时,函数t(x)在[m,1]上就是减函数,在[1,m+1]上就是增函数,

∴t(x)min=t

(1)=e.

(Ⅱ)设l2的方程为y=k2x,切点为(x2,y2),则,

∴x2=1,y2=e∴k2=e.由题意知,切线l1的斜率,∴切线l1的方程为,设l1与曲线y=f(x)的切点为(x1,y1),∴,∴,,

又y1=lnx1﹣a(x1﹣1),消去y1,a后整理得,

令,则,

∴m(x)在(0,1)上单调递减,在(1,+∞)上单调递增,

若x1∈(0,1),∵,,∴,

而,在单调递减,∴.

若x1∈(1,+∞),∵m(x)在(1,+∞)上单调递增,且m(e)=0,

∴x1=e,∴

综上,a=0或.

【作业2】.(2017•黄山二模)已知函数f(x)=(ax2+x﹣1)ex+f'(0).

(1)讨论函数f(x)的单调性;

(2)若g(x)=e﹣xf(x)+lnx,h(x)=ex,过O(0,0)分别作曲线y=g(x)与y=h(x)的切线l1,l2,且l1与l2关于x轴对称,求证:

﹣<a<﹣.

四.求公切线的方程 

【例6】.(2018•安阳一模)已知函数,g(x)=3elnx,其中e为自然对数的底数.

(Ⅰ)讨论函数f(x)的单调性.

(Ⅱ)试判断曲线y=f(x)与y=g(x)就是否存在公共点并且在公共点处有公切线.若存在,求出公切线l的方程;若不存在,请说明理由.

【解答】解:

(Ⅰ)由,得,

令f′(x)=0,得.

当且x≠0时,f′(x)<0;当时,f′(x)>0.

∴f(x)在(﹣∞,0)上单调递减,在上单调递减,在上单调递增;

(Ⅱ)假设曲线y=f(x)与y=g(x)存在公共点且在公共点处有公切线,且切点横坐标为x0>0,

则,即,其中

(2)式即.

记h(x)=4x3﹣3e2x﹣e3,x∈(0,+∞),则h'(x)=3(2x+e)(2x﹣e),

得h(x)在上单调递减,在上单调递增,

又h(0)=﹣e3,,h(e)=0,

故方程h(x0)=0在(0,+∞)上有唯一实数根x0=e,经验证也满足

(1)式.

于就是,f(x0)=g(x0)=3e,f′(x0)=g'(x0)=3,

曲线y=g(x)与y=g(x)的公切线l的方程为y﹣3e=3(x﹣e),

即y=3x.

【作业3】.已知函数f(x)=lnx,g(x)=2﹣(x>0)

(1)试判断当f(x)与g(x)的大小关系;

(2)试判断曲线y=f(x)与y=g(x)就是否存在公切线,若存在,求出公切线方程,若不存在,说明理由;

(3)试比较(1+1×2)(1+2×3)…(1+2012×2013)与e4021的大小,并写出判断过程.

五、与公切线有关的参数取值范围问题

【例7】.已知函数f(x)=blnx,g(x)=ax2﹣x(a∈R).

(Ⅰ)若曲线f(x)与g(x)在公共点A(1,0)处有相同的切线,求实数a、b的值;

(Ⅱ)当b=1时,若曲线f(x)与g(x)在公共点P处有相同的切线,求证:

点P唯一;

(Ⅲ)若a>0,b=1,且曲线f(x)与g(x)总存在公切线,求正实数a的最小值.

【解答】解:

(Ⅰ)f′(x)=,g'(x)=2ax﹣1.

∵曲线f(x)与g(x)在公共点A(1,0)处有相同的切线,

∴,解得a=b=1.

(Ⅱ)设P(x0,y0),则由题设有lnx0=ax02﹣x0…①,

又在点P有共同的切线,∴f′(x0)=g′(x0),∴,

∴a=,代入①得lnx0=x0,

设h(x)=lnx﹣+x,则h′(x)=+(x>0),则h′(x)>0,

∴h(x)在(0,+∞)上单调递增,所以h(x)=0最多只有1个实根,

从而,结合

(1)可知,满足题设的点P只能就是P(1,0).

(Ⅲ)当a>0,b=1时,f(x)=lnx,f′(x)=,

f(x)在点(t,lnt)处的切线方程为y﹣lnt=(x﹣t),即y=x+lnx﹣1.

与y=ax2﹣x,联立得ax2﹣(1+)x﹣lnt+1=0.

∵曲线f(x)与g(x)总存在公切线,

∴关于t(t>0)的方程△=+4a(lnt﹣1)=0,

即=4a(1﹣lnt)(*)总有解.

若t>e,则1﹣lnt<0,而>0,显然(*)不成立,所以0<t<e,

从而,方程(*)可化为4a=.

令H(t)=(0<t<e),则H′(t)=.

∴当0<t<1时,h'(t)<0;当1<t<e时,h'(t)>0,

即h(t)在(0,1)上单调递减,在(1,e)上单调递增.

∴h(t)在(0,e)上的最小值为h

(1)=4,

∴要使方程(*)有解,只须4a≥4,即a≥1.

∴正实数a的最小值为1.

【例8】.(2017•韶关模拟)、已知函数f(x)=aex(a≠0),g(x)=x2

(Ⅰ)若曲线c1:

y=f(x)与曲线c2:

y=g(x)存在公切线,求a最大值.

(Ⅱ)当a=1时,F(x)=f(x)﹣bg(x)﹣cx﹣1,且F

(2)=0,若F(x)在(0,2)内有零点,求实数b的取值范围.

【解答】解:

(Ⅰ)设公切线l与c1切于点(x1,a)与c2切于点(x2,),

∵f′(x)=aex,g′(x)=2x,

∴,由①知x2≠0,①代入②:

=2x2,即x2=2x1﹣2,

由①知a=,设g(x)=,g′(x)=,

令g′(x)=0,得x=2;当x<2时g′(x)>0,g(x)递增.

当x>2时,g′(x)<0,g(x)递减.

∴x=2时,g(x)max=g

(2)=,∴amax=.

(Ⅱ)F(x)=f(x)﹣bg(x)﹣cx﹣1=ex﹣bx2﹣cx﹣1,

∵F

(2)=0=F(0),又F(x)在(0,2)内有零点,

∴F(x)在(0,2)至少有两个极值点,

即F′(x)=ex﹣2bx﹣c在(0,2)内至少有两个零点.

∵F″(x)=ex﹣2b,F

(2)=e2﹣4b﹣2c﹣1=0,c=,

①当b≤时,在(0,2)上,ex>e0=1≥2b,F″(x)>0,

∴F″(x)在(0,2)上单调增,F′(x)没有两个零点.

②当b≥时,在(0,2)上,ex<e2≤2b,∴F″(x)<0,

∴F″(x)在(0,2)上单调减,F′(x)没有两个零点;

③当<b<时,令F″(x)=0,得x=ln2b,

因当x>ln2b时,F″(x)>0,x<ln2b时,F″(x)<0,

∴F″(x)在(0,ln2b)递减,(ln2b,2)递增,

所以x=ln2b时,∴F′(x)最小=F′(ln2b)=4b﹣2bln2b﹣+,

设G(b)=F′(ln2b)=4b﹣2bln2b﹣+,

令G′(b)=2﹣2ln2b=0,

得2b=e,即b=,当b<时G′(b)>0;当b>时,G′(b)<0,

当b=时,G(b)最大=G()=e+﹣<0,

∴G(b)=f′(ln2b)<0恒成立,

因F′(x)=ex﹣2bx﹣c在(0,2)内有两个零点,

∴,

解得:

<b<,

综上所述,b的取值范围(,).

【作业4】.已知函数f(x)=a(x﹣)﹣blnx(a,b∈R),g(x)=x2.

(1)若a=1,曲线y=f(x)在点(1,f

(1))处的切线与y轴垂直,求b的值;

(2)若b=2,试探究函数f(x)与g(x)在其公共点处就是否有公切线,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > PPT模板

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1