基于狄拉克方程的边缘态理论与应用Word下载.docx

上传人:b****6 文档编号:17333374 上传时间:2022-12-01 格式:DOCX 页数:10 大小:386.87KB
下载 相关 举报
基于狄拉克方程的边缘态理论与应用Word下载.docx_第1页
第1页 / 共10页
基于狄拉克方程的边缘态理论与应用Word下载.docx_第2页
第2页 / 共10页
基于狄拉克方程的边缘态理论与应用Word下载.docx_第3页
第3页 / 共10页
基于狄拉克方程的边缘态理论与应用Word下载.docx_第4页
第4页 / 共10页
基于狄拉克方程的边缘态理论与应用Word下载.docx_第5页
第5页 / 共10页
点击查看更多>>
下载资源
资源描述

基于狄拉克方程的边缘态理论与应用Word下载.docx

《基于狄拉克方程的边缘态理论与应用Word下载.docx》由会员分享,可在线阅读,更多相关《基于狄拉克方程的边缘态理论与应用Word下载.docx(10页珍藏版)》请在冰豆网上搜索。

基于狄拉克方程的边缘态理论与应用Word下载.docx

拓扑保护的一维边缘态曾在HgTe/CdTe量子阱中被预言,随后被证实,很快,含祕的固体化合物中乂被预言存在拓扑绝缘体,不同实验组通过角分辨电子光谱的方法,在晞化钳,硒化钮等化合物中观察到了拓扑保护的表面量子态,这类材料山于自身存在较强的自旋轨道耦合,使得在不依赖外部磁场作用的下,表现出在表面,存在受到时间反演不变性保护的量子态。

拓扑绝缘体近年来受到极大关注,部分原因是因为在自旋电子学和量子计算可能的技术应用。

最近,人们乂在石墨烯中发现了奇特的电子结构,下面儿节,我们将具体讨论在石墨烯和一维HgTe/CdTe中的拓扑绝缘体。

从理论上,这类材料山狄拉克方程描述。

由于时间反演不变性,自旋相反的两类手征态在费米面交叉,形成狄拉克锥。

曲于边界周期性条件的存在,使得材料的布里渊区形成带有孔洞的(亏格)封闭曲面,这与没有边界限制的情形截然不同,此时将会在材料的边缘出现连接导带和价带的边缘态,从而其表面可以导电,内部绝缘。

当X轴或Y轴存在限制时,有边界条件的情况下,求解薛定谴方程,得到哈密顿量的精确解,即为边缘态。

这种拓扑绝缘体的实现大多是在存在强磁场的情况下,然而,有一种材料在不加磁场时,山于其自身的自旋轨道耦合作用,即存在边缘态,成为了拓扑绝缘体,它的时间反演不变性完全没有被破坏,下面,将简要描述下石墨烯的Kane-MeIe模型以及二维HgTe/CdTe量子阱。

本文将从理论上讨论拓扑绝缘材料的理论基础。

首先给出边缘态理论,我们利用简单但极具启发性的BerneVing-HUgheS-Zhang模型介绍边缘态的基本概念;

然后针对一类具体的拓扑绝缘材料,从狄拉克方程出发,基于理论和数值再现材料的边缘态;

最后简要给出总结与展望。

第一节Kane-MeIe模型

石墨烯是一种二维的碳纳米材料,它的每个碳原子有四个价电子,这四个价电子通过杂化形成O•键,剩下的电子通过共价结合形成兀键,在费米面附近,它的电子性质主要靠兀键决定,石墨这种奇特的电子结构引起了人们的注意。

05年,Kdne与MeIe通过对单层石墨的研究,预言了石墨烯中的量子自旋霍尔效应的存在,在S=自旋守恒的假设下,Kane-MeIe模型的哈密顿量H被写作

其中〈“)表示最近邻原子,第一项表示最近邻跃迁。

将近邻原子标记为k,d辻表示位置k到i的矢量,贝9式中v..=2(^∙×

⅛)∕√3=±

1,第二项表示次近邻原子的自旋轨道耦合作用。

O、

HaIdane^(Φ=Z+兀'

丿

由该哈密顿量H描述的系统具有时间反演不变性,以(CAT,CBy,CAI,CBl)为基,有H=(HHaIdan(φ=-∕Γ∕2)

_OH

IIeIIdanetV

(―&

其中(1.1.2)式由(1.1.1)式变换到动量空间得到,通过上述两个互为时间反演的Haldane模型,我们可以得出Kane-MeIe模型的整个系统时间反演不变的结论。

通过对上述哈密顿量的傅里叶变换及展开,Kane和MeIe给出了石墨烯中量子自旋霍尔态的具体区域:

‰-Λ>

√U2v÷

9Λ2),其中几V为位能交错势。

同时,计算霍尔电导发现,非磁性杂质并不影响量子霍尔自旋态。

图2Kane-MeIe模型的能带和相图

可以看出Kane-MeIe模型边缘态的实现并非山于外加磁场的作用,而是由于其自身自旋轨道的耦合,其时间反演不变性完全未被破坏,该模型作为早期模型,对拓扑绝缘体的初期研究有不可估量的作用。

第二节二维HgTe/CdTe量子阱

山于磁场的导入破坏了体系的时间反演不变性,不引入磁场而实现自旋量子霍尔效应的模型最早山Kane和MeIe在Haldane模型的基础上通过引入自旋轨道耦合项而实现的,山于石墨烯的体能隙大约只有10^⅛ev,非常小,使得该系统只存在非常微弱的自旋轨道耦合作用,因此,至今为止,实验上还没有观测到石墨烯的量子自旋霍尔效应,寻找新的,具有强自旋轨道耦合的材料就变得十分有必要。

2006年,有人在理论上预言了自旋量子霍尔效应可以在二维HgTe/CdTe量子阱中实现,随后,该预言被德国一所大学的实验组证明。

HgTe/CdTe材料中,CdTe与半导体性质类似,它的S型对称电子在导带上而P型对称电子则在价带上,对于HgTe材料来说,由于Hg原子序数大,较重,使得血Te的自旋耦合作用远远大于CdTe,导致了能带的反转,从而令材料表现出了一种拓扑性质,如图3所示。

HgTo

•F6Γ6

HgTB

El

HI

CdTe

■■∙w■Λ*分**∙N

CeiTe

4►

Γ8

•—……・

d<

dcd>

dc

图3d<

dc时,El>

/∕l,d>

de时,E}<

HX

考虑靠近费米能级的四个带,以|乓+,丁〉,∣λ∕i+Λ),I耳一,巧,EI-A)为基矢,以泡利矩阵b,∙表示两个子能带,可以在厂点得到有效的四个能带的哈密顿量

He〃(匕'

仇)=(S)h*(+)=(*)+%(花)巧(121)

d∖+id?

=q(Vι-Hi^y)≡A花+(122)

d3=M-B(kA2+ky2)Efi=C-Ddk初(1.2.3)

A,B,C,D均依赖于材料参数,由式中可以看出,参数H可以连续变化,当M>

0时,量子阱尺寸d<

dc,能带处于正常状态,系统为正常绝缘体,当M〈0时,量子阱尺寸d>

dc,能带发生反转,系统为拓扑绝缘体,d二£

为临界点,该点处,系统发生拓扑量子相变。

图4为系统分别处于两态时能带图。

-0.10-0.050.000.050.10-0.10-0.050.000.050.10

k(π)

k(ττ)

图4(a)为系统处于拓扑绝缘态时能带图,(b)为系统处于正常绝缘体时能带图

第二章狄拉克方程的边缘态

第一节边缘态

2.1.1BerneVing-HUgheS-Zhang(BHZ)模型

为了清楚地理解边缘态的概念,我们从简单但极具启发性的BHZ模型入手。

该模型描述了自旋粒子在晶格中的跃迁,它的精确哈密顿量为:

H伙)=[A+coskγ+coskJcr.+A(SinCQl+sin忍务)(2.1.1.1)

其中△表示塞曼能级分裂,A表示体系的自旋轨道耦合。

从哈密顿量的形式看,它是个简单的两带模型,在不考虑边缘态的情况下,能谱形成两支被能隙隔离的价带和导带。

为了简单起见,我们仅讨论“半”BHZ模型,即该模型仅在其中一个维度上作限定,使其满足周期性边界条件,而另一维度保持原有的状态,因此在该维度上,它的动量分量依然是好量子数。

2.1.2洋”BHZ模型

(2.1.1.1)式中所得精确哈密顿量是在未限定边界条件的惜况下求得的,假设我们对y限制边界,x仍取无边界情况。

首先利用欧拉公式将(2.1.1.1)式中三角函数转化为自然指数形式,X方向保持原有的状态不变,可以得到下式:

1→

将边界条件N代入上式:

(2」22)

eiky和可变换为:

其中仏.+ι∣和仏」为近邻原子。

得到哈密顿方程精确解为:

Hg=氏∙0("

)+e.亿(町+氏(加)+«

£

(〃)+氏心"

(加)(2・1-2.4)该式仅依赖于X方向的动量分量。

基于哈密顿量的矩阵形式,我们可以通过严格对角化给出体系的能谱,我们注意到该哈密顿量的矩阵元含有虚数项,但山于哈密顿量是厄米的,对角化时需要将矩阵的维数扩大一倍,进而得到两支能谱。

具体的结果如图可示。

从图上我们可以看到在价带顶和导带底山两条自旋相反的边缘态联系起来,它们在费米面出交义形成狄拉克锥,山于时间反演不变的保护,它们的状态是稳定的,只有改变体系的拓扑结构才能破坏这种稳定性。

而改变体系的拓扑结构意味着改变原有的哈密顿量,只有外部条件的引入才能导致哈密顿量连续性的遭到破坏。

-4-2024

kx

图5

第二节狄拉克方程下的边缘态

我们以三维拓扑绝缘体BicSe3为模型,我们同样仅考虑半无限情形的边界条件。

假定该材料是沿Z轴生长的薄膜材料,因此在该维度上体系的状态将受到限制,而在x-y平面保持电子的平面波状态。

Ill于材料中存在强的自旋轨道耦合作用,两个具有相反宇称的轨道巳在了点发生了能带反转,使得BicSe3/点附近的电子结构可以决定该材料的拓扑性质,在Se和Bi的P轨道耦合的情况下,我们以{∣77ζΛ),∣p27Λ),∣pltΛ),∣p27Λ)}为基矢,

可以得到哈密顿量的模型

其中

A(AI)=(Λf+BXdZ-B2k2)σz-iAx∂σx^22)

巧为泡利矩阵,k-=k;

+k~fk±

=kx±

iky,该哈密顿量具有时间反演不变性。

我们选取了一种具体的材料来研究拓扑绝缘体的哈密顿量,但本文中的结论应当对所有拓扑材料都适用。

建立一个一般性的薄膜模型,在Γ点、(忍=忍=0)附近,表面电子态的有效哈密顿量为

h0(Al)=C-DfilZ+(M+BIdI)σz-iAx∂zσx2.4)

由于哈密顿量HO是对角的,我们给它一个二分量的试探波函数,可以得到

利用Z二L/2的边界条件,我们会得到下面两个超越方程

[o-M-E-(D}+BX)Λ12_tanh(ΛaΔ/2)

=Umh(AlL/2)(2.2.6)

其中,«

=1,2,当Q=I时,〃二2,反之亦然,因此,这里就出现了两个方程。

上式中兄α为能量E的函数,同时,它还决定了Z轴函数的变化

□(E、=—F+(―])Ci

Oe_V2(Z>

12-^12)(22.7)

为了方便,我们定义

F=AI$+2D](E-C*)-2B∣Λ/028)

R=F?

-4(Z^i2-B12)L(^∙-e)2-Λ√2J(229)山此,我们求得哈密顿量h。

(Al)的波函数Q(AI)和f(A)为

对上述解做替换A→-A1,即可得到第二组解,h0(-A1)的波函数/(-A)和χ∖-A)θ

以这四组波函数为基底并对其重新排列:

我们可以得到在二维极限下,拓扑绝缘体在表面态的低能有效哈密顿量

其中人伙)=Eo-Dk2-hvF(kxσy-kγσx)+τz(^-Bk2)σz。

可得:

'

Aik

(2.2.14)

-+Bk2

2丿

(2215)

其中:

22-

EC=(E+E.)/2,Δ=E+-E_B=坊@041)IbZ9(AI»

^=B2{χ(A1)∣σz∣χ(Λ1)),

A2=A2@(Al)∣σv∣χ(-Λ1)).^.2.16)

当召取实数A≡ħvF时,哈密顿量可以写作:

hr=E..-Dk1+ħv.τγσ∙k+τ7σ.(―-Bk2)

t2(2.2.17)

当A取虚数Al≡iħvF时,哈密顿量被写作:

h.=En-Dk2+ħv.(σ×

k)γ+τ7σΛ--Bk2)

η2(2.2.18)

我们加入两个限制条件:

λaL^>

1以及α=l,2来观察哈密顿量的变化,其中,(0/2)=1。

可以得到:

(C-M-E-D^)λ2=(C-M-E-D+λ~)λl(2219)在仅考虑半无限情形的边界条件时,能谱具有精确禹结•果,具体的公

式为:

HSlS=C+~τ~+(D2-B]-Lu2+ΛJl-(--L)2(σΛV-kx)

ddVd(2.2.20)

图6给出了基于狄拉克方程给岀的边缘态解,在图中实点是直接求解哈密顿量给出的结果,该方法适用于所有情形。

实线给出的是精确解的结果,该情形只有在特殊情况下才可能获得。

从图中我们可以看到两种方案给出了一致的边缘态。

由于我们仅考虑边缘态解,所以图中没有体现体能态部分。

自旋相反的两支边缘态在禁带内交义形成二维狄拉克锥,它们同样受到时间反演不变性的保护,这类非平凡拓扑性来源于不同轨道之间的能带反转,这由Bi和Te中强的自旋轨道耦合所导致。

00_I1Γ

-0.10.00.1

KX

该论文我们基于狄拉克方程的边缘态解,从理论上讨论了边缘态形成的主要原因,即,体系哈密顿量在时间反演对称下保持不变,导致体系具有两支在禁带内交义形成狄拉克锥的稳定结构。

为了更加深刻的理解边缘态的概念,我们还利用BerneVig-HUgheS-Zhang模型,从细节上研究了ill连续模型到附加边缘效应的过程。

在短短的儿年时间,拓扑绝缘体引起了巨大的研究热潮,对于绝缘体中,量子霍尔效应的研究也拓展到了量子自旋霍尔体系,三维绝缘体以及强关联电子体系。

拓扑绝缘体是相较于传统绝缘体一种完全不同的物质态,它在费米能处存在能隙,但在材料的表面则总是存在着穿越能隙的狄拉克型电子态,导致其表面总是金属性的。

正是由于拓扑绝缘体这种特殊的导电性质,使得大量的科学家投入了对这种材料的研究,以寻找体能隙足够大,化学性质稳定的强拓扑绝缘体材料。

例如近年来发现的,可以被认为是二维拓扑绝缘体的硅烯材料,这种材料具有与石墨烯相似的电子层结构,它在一定的外加磁场和电场下,会出现明显的反常量子霍尔效应,该材料的发现可以用于以前设想的,基于石墨烯的器材中,同时硅烯材料也可以与IJ前已经成熟的硅材料技术结合,用于生产大规模集成电路。

此外,最近,上海交大物理系研究组利用自身在薄膜制备和原位表征方面的优势,通过分子束外延手段,首次成功的在超导体衬底上生长出了电接触良好且界面原子级清晰的拓扑绝缘体/超导异构结构,成功实现了超导电子对和拓扑表面态二者的共存。

这一成果为MajOrana费米子的探寻提供了一个有力的实验平台,也为掌握并调控拓扑电子态找到了突破口。

拓扑绝缘体的研究不仅在自旋电子学,量子计算,基础物理中有着重要作用,作为一种新型材料,它将在拓扑量子计算,量子传输以及电路集成方面有着不可忽视的应用前景。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 工程科技 > 电力水利

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1