图像增强方法Word格式.docx
《图像增强方法Word格式.docx》由会员分享,可在线阅读,更多相关《图像增强方法Word格式.docx(10页珍藏版)》请在冰豆网上搜索。
这时在显示器上看到的将是一个模糊不清、似乎没有灰度层次的图像。
采用线性变换对图像每一个像素灰度作线性拉伸,可有效地改善图像视觉效果。
(2)分段线性变换为了突出感兴趣目标所在的灰度区间,相对抑制那些不感兴趣的灰度区间,可采用分段线性变换。
如下图所示。
设原图像在[0,Mf],感兴趣目标所在灰度范围在[a,b],欲使其灰度范围拉伸到[c,d],则对应的分段线性变换表达式为
通过调整折线拐点的位置及控制分段直线的斜率,可对任一灰度区间进行拉伸或压缩。
(3)非线性灰度变换当用某些非线性函数如对数函数、指数函数等,作为映射函数时,可实现图像灰度的非线性变换。
①对数变换对数变换的一般表达式为
这里a,b,c是为了调整曲线的位置和形状而引入的参数。
当希望对图像的低灰度区较大的拉伸而对高灰度区压缩时,可采用这种变换,它能使图像灰度分布与人的视觉特性相匹配。
②指数变换指数变换的一般表达式为
这里参数a,b,c用来调整曲线的位置和形状。
这种变换能对图像的高灰度区给予较大的拉伸。
2.直方图修整法
灰度直方图反映了数字图像中每一灰度级与其出现频率间的关系,它能描述该图像的概貌。
通过修改直方图的方法增强图像是一种实用而有效的处理技术。
直方图修整法包括直方图均衡化及直方图规定化两类。
(1)直方图均衡化
直方图均衡化是将原图像通过某种变换,得到一幅灰度直方图为均匀分布的新图像的方法。
下面先讨论连续变化图像的均衡化问题,然后推广到离散的数字图像上。
为讨论方便起见,设r和s分别表示归一化了的原图像灰度和经直方图修正后的图像灰度。
即
。
在[0,1]区间内的任一个r值,都可产生一个s值,且
T(r)作为变换函数,满足下列条件:
①在0≤r≤1内为单调递增函数,保证灰度级从黑到白的次序不变;
②在0≤r≤1内,有0≤T(r)≤1,确保映射后的像素灰度在允许的范围内。
反变换关系为
,T-1(s)对s同样满足上述两个条件。
由概率论理论可知,如果已知随机变量r的概率密度为pr(r),而随机变量s是r的函数,则s的概率密度ps(s)可以由pr(r)求出。
假定随机变量s的分布函数用Fs(s)表示,根据分布函数定义
利用密度函数是分布函数的导数的关系,等式两边对s求导,有:
可见,输出图像的概率密度函数可以通过变换函数T(r)可以控制图像灰度级的概率密度函数,从而改善图像的灰度层次,这就是直方图修改技术的基础。
从人眼视觉特性来考虑,一幅图像的直方图如果是均匀分布的,即Ps(s)=k(归一化时k=1)时,该图像色调给人的感觉上该图像比较协调。
因此要求将原直方图通过T(r)调整为均匀分布的.然后反过来按均衡化的直方图去调整原图像,以满足人眼视觉要求的目的。
因为归一化假定
,由密度函数则有
,两边积分得
,上式表明,当变换函数为r的累积分布函数时,能达到直方图均衡化的目的。
对于离散的数字图像,用频率来代替概率,则变换函数T(rk)的离散形式可表示为:
上式表明,均衡后各像素的灰度值sk可直接由原图像的直方图算出。
一幅图像sk同rk之间的关系称为该图像的累积灰度直方图。
下面举例说明直方图均衡过程。
例:
假定有一幅总像素为n=64×
64的图像,灰度级数为8,各灰度级分布列于表中。
对其均衡化计算过程如下:
原图像的直方图均衡后图像的直方图
直方图均衡化示例
(2)直方图规定化在某些情况下,并不一定需要具有均匀直方图的图像,有时需要具有特定的直方图的图像,以便能够增强图像中某些灰度级。
直方图规定化方法就是针对上述思想提出来的。
直方图规定化是使原图像灰度直方图变成规定形状的直方图而对图像作修正的增强方法。
可见,它是对直方图均衡化处理的一种有效的扩展。
直方图均衡化处理是直方图规定化的一个特例。
对于直方图规定化,下面仍从灰度连续变化的概率密度函数出发进行推导,然后推广出灰度离散的图像直方图规定化算法。
假设pr(r)和pz(z)分别表示已归一化的原始图像灰度分布的概率密度函数和希望得到的图像的概率密度函数。
首先对原始图像进行直方图均衡化,即求变换函数:
假定已得到了所希望的图像,对它也进行均衡化处理,即
它的逆变换是
这表明可由均衡化后的灰度得到希望图像的灰度。
若对原始图像和希望图像都作了均衡化处理,则二者均衡化的ps(s)和pv(v)相同,即都为均匀分布的密度函数。
由s代替v得z=G-1(s),这就是所求得的变换表达式。
根据上述思想,可总结出直方图规定化增强处理的步骤如下:
①对原始图像作直方图均衡化处理;
②按照希望得到的图像的灰度概率密度函数pz(z),求得变换函数G(z);
③用步骤①得到的灰度级s作逆变换z=G-1(s)。
经过以上处理得到的图像的灰度级将具有规定的概率密度函数pz(z)。
采用与直方图均衡相同的原始图像数据(64×
64像素且具有8级灰度),其灰度级分布列于表中。
给定的直方图的灰度分布列于表中。
对应的直方图如下:
原图像的直方图规定化直方图
原图像的直方图规定的直方图规定化后图像的直方图
利用直方图规定化方法进行图像增强的主要困难在于要构成有意义的直方图。
图像经直方图规定化,其增强效果要有利于人的视觉判读或便于机器识别。
下面是一个直方图规定化应用实例。
图(C)、(c)是将图像(A)按图(b)的直方图进行规定化得到的结果及其直方图。
通过对比可以看出图(C)的对比度同图(B)接近一致,对应的直方图形状差异也不大。
这样有利于影像融合处理,保证融合影像光谱特性变化小。