化工工艺学作业题要求.docx

上传人:b****3 文档编号:1727351 上传时间:2022-10-23 格式:DOCX 页数:9 大小:50.35KB
下载 相关 举报
化工工艺学作业题要求.docx_第1页
第1页 / 共9页
化工工艺学作业题要求.docx_第2页
第2页 / 共9页
化工工艺学作业题要求.docx_第3页
第3页 / 共9页
化工工艺学作业题要求.docx_第4页
第4页 / 共9页
化工工艺学作业题要求.docx_第5页
第5页 / 共9页
点击查看更多>>
下载资源
资源描述

化工工艺学作业题要求.docx

《化工工艺学作业题要求.docx》由会员分享,可在线阅读,更多相关《化工工艺学作业题要求.docx(9页珍藏版)》请在冰豆网上搜索。

化工工艺学作业题要求.docx

化工工艺学作业题要求

简答题(黑色重点掌握,红色一般了解)

1简述煤的高温干馏及主要产物。

高温干馏为煤在隔绝空气条件下900-1100℃下进行。

高温干馏煤气、液态产物和焦碳大约为20%、5.5%、74.5%左右。

高温干馏的液态产物主要为高温焦油(4%焦化产品)和粗苯(1.5%焦化产品),高温焦油主要是萘及苯、甲苯、二甲苯、酚、吡啶等芳香烃及芳杂环化合物的混合物。

粗苯分离精制可得到苯、甲苯、二甲苯等基本有机化学工业产品。

3简述煤直接液化原理及主要液态产物的分类和性质。

将煤在高温、高压和催化剂作用条件下与氢反应直接转化为液体油品。

前沥青烯为不溶于苯、但溶于吡啶和四氢呋喃的重质煤液化产物,杂原子含量较高,平均相对分子量在1000左右;沥青烯为可溶于苯、但不溶于正己烷或环己烷的的重质煤液化产物,平均相对分子量在500左右;油为轻质的可溶于正己烷或环己烷的产物的产物,平均相对分子量在300以下,进一步蒸馏可得到含有芳烃的轻油及重油产品。

6简述原油电脱水脱盐预处理。

原油中含有一定量的盐和水,形成比较稳定的油包水型乳化液。

炼油厂采用加破乳剂和高压电场联合作用的脱盐方法。

电脱盐脱水是将原油、破乳剂和洗涤水按一定比例混合,在80-120℃温度下,在破乳剂和高压电场共同作用下,乳化液被破坏,小水滴凝结成大水滴,无机盐溶于水,通过沉淀分离、排出,经过二次电脱盐工序,原油中含盐和含水可达到炼油工序要求。

9简述加氢裂化及其特点

在临氢、具有加氢活性和裂化活性双功能催化剂作用条件下进行催化裂化,可抑制催化裂化时发生的脱氢缩合反应,避免焦炭的生成。

加氢裂化的特点:

生产灵活性大,使用的原料范围广;产品收率高,产品含不饱和烃和重芳烃少,可除去有害的硫、氮、氧的化合物,质量好;抑制焦炭的生成。

10简述催化重整及其工艺流程组成

将轻质原料油(烷烃和环烷烃),经过铂催化剂的作用,使油料中的烃类重新调整结构,生成大量芳烃的工艺过程。

催化重整装置的工艺流程主要有预处理及催化重整、抽提和精馏三个组成部分。

13简述煤气化过程中温度、压力对产物平衡浓度的影响。

随着温度升高,有利于H2和CO的合成气生成,而不利于CH4生成,当温度达到900℃时,CH4和CO2的平衡浓度接近于零;降低压力有利于提高CO和H2的平衡浓度,增加压力有利于CH4的平衡浓度增加。

14简述K-T炉连续式煤气化工艺

K-T炉为气流床连续式气化炉。

在常压、高温下以水蒸气和氧气与干煤粉反应生成以CO和H2为主要组分合成气的气化方法。

高速的气化剂夹带很细的干煤粉喷入气化炉,在1500-1600℃下进行疏相并流气化,气固接触面大,细颗粒的内扩散阻力小,温度高,扩散速率和反应速率均很高,生产强度非常大,灰渣以熔融态排除炉外。

21试分析氧化锌法对合成气中不同硫脱除特点。

氧化锌是一种高效脱硫剂,能直接吸收硫化氢和硫醇,与氧化锌生成难解离的硫化锌。

氧化锌不能脱除硫氧化碳、二硫化碳、硫醚和噻吩等,需要催化加氢转化为硫化氢后,再用氧化锌脱除。

氧化锌法一般只用于低硫气体的精脱硫,该脱硫剂不能再生。

23简述冷甲醇法在原料气中脱硫过程中的工作原理。

利用甲醇有机溶剂在-40~-54℃、5.3~5.4MPa条件下进行物理吸收硫化氢,但对氢、一氧化碳、氮等气体的溶解度相当小,在净化过程中有效成分损失最小;甲醇经减压可释放出硫化氢,再生后甲醇经加压再循环使用。

24简述湿式氧化法脱硫原理。

利用含催化剂的碱性溶液吸收硫化氢,以催化剂为载氧体,使硫化氢氧化成单质硫,催化剂本身被还原;再生时通入空气将还原态的催化剂氧化复原,如此循环使用。

湿式氧化法一般只能脱除硫化氢,不能或只能少量脱除有机硫。

25简述硫化氢的回收(克劳斯工艺)原理。

克劳斯工艺催化剂主要为氧化铝,添加少量Ni、Mn等金属。

在燃烧炉内使1/3的H2S与O2反应,生成SO2和H2O;剩余2/3的H2S与此SO2在克劳斯工艺催化剂作用生成下发生克劳斯反应,生成单质硫和H2O。

26简述合成氨原料气中二氧化碳回收的必要性。

合成氨原料气经过一氧化碳变换生成大量的二氧化碳,可达到16-30%(体积百分含量),二氧化碳会使合成氨催化剂暂时中毒,稀释原料气,降低氢和氮的分压,与含氨循环气接触会生成碳酸氢氨结晶,堵塞管道,二氧化碳是尿素、纯碱、干冰的原料。

28简述反应条件对合成氨反应的化学平衡的影响。

氨合成的化学反应式,是一个放热反应。

反应后分子个数减小,高压有利于反应平衡向生成氨的方向进行,低压有利于反应平衡向反应原料的方向进行,较低的温度。

有利于反应平衡向吸热方向进行,有利于氨的合成。

30简述接触法生产硫酸基本工序和各自作用。

含硫原料焙烧制取二氧化硫,“焙烧工艺”除去焙烧制得的二氧化硫气流中中的各种杂质,“炉气精制”将含二氧化硫和氧的气体催化转化为三氧化硫,“转化”将三氧化硫与水结合成硫酸。

实现这一过程需将转化所得三氧化硫用硫酸吸收“吸收”

34简述硫磺制酸主要工艺流程。

熔硫工段、焚硫转化工段和干吸工段。

熔硫工段为固体硫磺的熔化、过滤、液硫储存和输送。

焚硫转化工段为液硫焚烧、二氧化硫转化及废热回收系统。

干吸工段为空气干燥和三氧化硫吸收系统。

35简述侯氏制碱法的制备原理。

以食盐水、氨和二氧化碳为原料,在生产纯碱的同时,副产氯化铵。

在侯氏制碱法中,分为制碱和制氯化铵两个过程。

在制碱过程,将含氨与氯化钠为主的溶液碳酸化,析出大量碳酸氢钠;在制氯化铵过程,为不使NaHCO3和NH4HCO3随NH4Cl析出,加入NH3与反应,生成和,同时补加氯化钠,在同离子效应作用下,使NH4Cl析出。

36简述电解过程原理。

电解为电流通过电解质溶液或熔融电解质时,在两个电极上所引起的化学变化。

电解时,电解质中的阳离子移向阴极,吸收电子,发生还原作用,生成新物质。

电解时,电解质中的阴离子移向阳极,放出电子,发生氧化作用,生成新物质。

电解过程中为电能转化为电解产物蕴藏的化学能。

37简述离子膜电解槽的食盐水溶液电解过程及产物。

在电解过程中,在阳极氯离子发生氧化反应,生成氯气。

在阴极发生还原反应,得到氢气,同时生成氢氧根离子,进而制得烧碱

40简述裂解气中添加水蒸气的目的。

烃类裂解反应的一次反应是体积增大、反应后分子数增加的反应,聚合、缩合、结焦等二次反应是分子数减小的反应。

从热力学和动力学分析,降低压力有利于一次反应的转化率和反应速率,不利于二次反应进行。

在不降低总压的条件下,在裂解气中加入水蒸气,可以降低烃分压。

41简述管式裂解炉的基本结构。

是一种外部加热的管式反应器,由炉体和裂解炉管两部分组成。

炉体用钢构件和耐火材料砌筑,分为对流段和辐射段。

原料预热管和蒸汽加热管安装在对流段内,裂解炉管布置在辐射段内,在辐射段的炉侧壁和炉顶或炉底,安装一定数量的燃烧烧嘴。

47简述裂解气中一氧化碳来源及脱除的方法。

裂解气中一氧化碳是在裂解过程中由结炭的气化和烃的转化反应生成的。

常见脱除一氧化碳的方法是甲烷法,在催化剂作用下,使氢气中的一氧化碳与氢反应生成甲烷,达到脱除一氧化碳的目的。

48简述裂解气的深冷分离法及深冷分离系统组成。

在-100℃左右低温下,将净化后裂解气中除氢和甲烷以外的烃类全部冷凝下来,利用各种烃的相对挥发度不同,在精馏塔内进行多组分精馏,分离各种烃。

深冷分离系统由气体压缩、冷冻系统、净化系统和低温精馏分离系统组成。

49简述降低固定床列管反应器热点温度、减少轴向温差所采取的措施。

在原料气中加入微量的抑制剂,使催化剂部分毒化,减缓反应程度;在装入催化剂的列管上层装填惰性填料,降低入口处附近的反应速率,降低反应放热速率,使之与除热速率尽可能平衡。

采用分段冷却法,改变冷却速率。

避开操作敏感区。

50简述列管式固定床反应器的特点。

催化剂磨损少,催化生成能力高。

传热效果比较差,沿轴向温差较大,且有热点出现;反应热由管内催化剂中心向外传递,存在径向温差;反应温度不易控制,容易发生飞温现象。

制造反应器所需合金钢材耗量大,催化剂装卸不方便。

原料气预先混合,配比严格,避开爆炸极限。

51简述列流化床反应器的特点。

催化剂磨损大,需要高强度和高耐磨性能,旋风分离器的效率高。

在流化床内气流易返混,反应推动力小,转化率下降,导致副反应发生,选择性下降。

传热效果好,反应温度易于控制。

催化剂装卸方便,制备所需合金钢材耗量较少。

原料气和空气可分开进入反应器,比较安全。

53简述乙烯催化氧化制备乙醛反应机理。

乙烯络合催化氧化制乙醛存在以下三个反应:

烯烃氧化

Pd的氧化

氯化亚铜氧化

20简述一氧化碳合成甲醇过程中铜基催化剂结构与工艺之间的关系。

一氧化碳加氢合成甲醇是一个可逆放热反应。

铜基催化剂的活性组分为Cu和ZnO,添加Cr2O3(或Al2O3)可提高铜在催化剂中的分散度,同时阻止分散的铜晶体在受热时被烧结、长大,延长催化剂的寿命。

催化剂活性高、反应温度低(230~270℃)和操作压力低(5~10MPa)

56简述工业上乙苯脱氢制苯乙烯的主要方法。

工业上乙苯脱氢制苯乙烯的主要有乙苯脱氢法和乙苯与丙烯共氧化法两种。

乙苯脱氢法:

苯乙烯收率达到95%以上,全世界苯乙烯总产量的90%采用本法生产。

乙苯与丙烯共氧化法:

乙苯氧化生成过氧化氢乙苯,然后与丙烯进行环氧化反应,生成α-甲基苯甲醇和环氧丙烷,最后α-甲基苯甲醇脱水生成苯乙烯。

该法能耗低,可联产环氧丙烷,综合效益较好。

59试用化学反应式简述甲醇为原料制备乙二醇的制备原理。

62简述丙烯氯化法生产环氧氯丙烷反应机理。

丙烯高温取代氯化生成氯丙烯

氯丙烯次氯酸化生成二氯丙醇

二氯丙醇皂化生成环氧氯丙烷

论述题(黑色重点掌握,红色一般了解)

2试分析重质油品的裂化并比较不同裂化方式对产品的影响

裂化是在一定条件下,重质油品的烃断裂为相对分子质量小、沸点低的烃的过程。

裂化有热裂化和催化裂化两种生产方法。

催化裂化与热裂化相比,烷烃分子链的断裂在中间而不是末端,产物以C3、C4和中等大小的分子(即从汽油到柴油)居多,C1和C2的产率明显减少。

异构化、芳构化环烷化等反应在催化剂作用下得到加强,使裂解产物中异构烷烃、环烷烃和芳香烃的含量明显增加,使裂化汽油的辛烷值和裂化柴油的十六烷值提高。

7分析影响甲烷水蒸汽转化反应平衡的主要因素

甲烷水蒸气反应生成CO和H2是吸热的、体积增大的可逆反应。

高温对H2和CO平衡产率有利,甲烷平衡含量低,但是温度过高,促进CH4裂化,发生碳析出副反应;水碳比(H2O/CH4)高,有利于甲烷转化反应,甲烷含量降低,同时高的水碳比可抑制碳析出副反应。

甲烷水蒸气反应生成CO和H2是体积增大反应,低压对H2和CO平衡产率有利,甲烷平衡含量低,低压会抑制CO和CH4发生碳析出副反应。

从甲烷水蒸汽转化反应平衡考虑,适当的高温、稍低的压力和高的水碳比对转化反应有利。

4试分析CO不同变换反应器的工作原理及其特点

中间间接冷却式多段绝热反应器,反应时与外界无热交换,冷却时将反应气引至热交换器中进行间接换热降温的反应器。

原料气冷激式多段绝热反应器,向反应器中添加原料气直接冷却的方式。

水蒸气或冷凝水冷激式多段绝热反应器,采用水蒸气或冷凝水冷激式直接冷却效果较好,同时增加水碳比。

中间间接冷却式多段绝热反应器,增加反应器分段数,操作温度接近最佳温度曲线,但流程和设备复杂,工程不合理,也不经济,一般采用2~3段可满足高转化率的要求。

原料气冷激过程虽无反应,增加反应物CO的初始量,转化率降低,为达到相同转化率,所用催化剂量比中间间接冷却式多,但其流程简单,省去换热器。

水蒸气或冷凝水冷激增加水碳比,对反应平衡和速率均有影响,冷激前后段的平衡曲线及最佳反应温度曲线是不相同,冷激前后无反应又没有增加CO原料,转化率不变。

8试分析在天然气蒸汽转换

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 农林牧渔 > 林学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1