东南大学模电实验六 多级放大器的频率补偿和反馈Word格式.docx

上传人:b****4 文档编号:17269956 上传时间:2022-11-30 格式:DOCX 页数:16 大小:1.37MB
下载 相关 举报
东南大学模电实验六 多级放大器的频率补偿和反馈Word格式.docx_第1页
第1页 / 共16页
东南大学模电实验六 多级放大器的频率补偿和反馈Word格式.docx_第2页
第2页 / 共16页
东南大学模电实验六 多级放大器的频率补偿和反馈Word格式.docx_第3页
第3页 / 共16页
东南大学模电实验六 多级放大器的频率补偿和反馈Word格式.docx_第4页
第4页 / 共16页
东南大学模电实验六 多级放大器的频率补偿和反馈Word格式.docx_第5页
第5页 / 共16页
点击查看更多>>
下载资源
资源描述

东南大学模电实验六 多级放大器的频率补偿和反馈Word格式.docx

《东南大学模电实验六 多级放大器的频率补偿和反馈Word格式.docx》由会员分享,可在线阅读,更多相关《东南大学模电实验六 多级放大器的频率补偿和反馈Word格式.docx(16页珍藏版)》请在冰豆网上搜索。

东南大学模电实验六 多级放大器的频率补偿和反馈Word格式.docx

其中偏置电路由电阻R1和三极管Q4构成,差分放大器由三极管Q3、NPN差分对管U2以及PNP差分对管U1构成,输出级由三极管Q2和PNP差分对管U3构成。

实验任务:

图1.基本的多级放大器

○1若输入信号的直流电压为2V,通过仿真得到图1中节点1,节点2和节点3的直流工作点电压;

V1(V)

V2(V)

V3(V)

14.42956

14.42958

8.38849

○2若输出级的NPN管Q2采两只管子并联,则放大器的输出直流电压为多少?

结合仿真结果给出输出级直流工作点电流的设置方法。

14.43772

14.43775

51.16179m

解:

将①和②对比可以发现,V3的数值产生明显的变化。

Q2之所以采用单只管子,是因为这样可以增大输出直流电压,使得工作点更稳定,提高直流工作点。

2.多级放大器的基本电参数仿真实验任务:

○1差模增益及放大器带宽

将输入信号V2和V3的直流电压设置为2V,AC输入幅度都设置为0.5V,相位相差180°

采用AC分析得到电路的低频差模增益AvdI,并提交输出电压V(3)的幅频特性和相频特性仿真结果图;

在幅频特性曲线中标注出电路的-3dB带宽,即上限频率fH;

在相频特性曲线中标注出0dB处的相位。

低频差模增益AvdI=99.4077dB

电压V(3)的幅频特性和相频特性仿真结果图:

由仿真图:

上限频率

=40.7572Hz

0dB处的相位=-173.4347

○2共模增益

将输入信号V2和V3的直流电压设置为2V,AC输入幅度都设置为0.5V,相位相同,采用AC分析得到电路的低频共模增益Avc,结合○1中的仿真结果得到电路的共模抑制比KCMR,并提交幅频特性仿真结果图。

低频共模增益Avc=-6.6202dB;

共模抑制比KCMR=100084.0807。

幅频特性仿真结果图:

○3差模输入阻抗

,进行AC分析,采用表达Rid=V(5)/I(V2)+V(6)/I(V3)得到差模输入阻抗Rid,请提交Rid随频率变化的曲线图,并在图上标记出100Hz处的阻抗值。

100Hz时的阻抗值=53.6585kΩ。

Rid随频率变化的曲线图:

○4输出阻抗

按照图2所示,在放大器输出端加隔直流电容C1和电压源V4,将V2和V3的直流电压设置为2V,AC幅度设置为0,将V4的AC幅度设置为1,进行AC分析,采用与输入阻抗类似的计算方法,得到电路的输出阻抗Ro随频率的变化曲线,并标注出100Hz处的阻抗值。

图2.多级放大器输出阻抗仿真电路

思考:

若放大器输出电压信号激励后级放大器,根据仿真得到的结果,后级放大器的输入阻抗至少为多少才能忽略负载的影响?

若后级放大器输入阻抗较低,采取什么措施可以提高放大器的驱动能力?

100Hz时的输出阻抗值=32.6843kΩ。

R0随频率的变化曲线:

后级放大器的输入阻抗至少为该放大器输出阻抗的十倍时才可忽略负载,Ri≥326.943kΩ;

提高放大器的驱动能力可以减小该放大器的输出阻抗,可以在输出端并联一个小电阻。

3.多级放大器的频率补偿

作为放大器使用时,图1所示电路一般都要外加负反馈。

若放大器内部能够实现全补偿,外部电路可以灵活的施加负反馈,避免振荡的反生,即要求放大器单位增益处的相位不低于

-135°

为此,需要对电路进行频率补偿。

实验任务:

○1简单电容补偿

按照图1所示电路,将输入信号V2和V3的直流电压设置为2V,AC输入幅度都设置

为0.5V,相位相差180°

,根据电路分析并结合AC仿真结果找出电路主极点位置,并采用简单电容补偿方法进行频率补偿,通过仿真得到最小补偿电容值,使得单位增益处相位不低于-135°

,提交补偿后V(3)的幅频特性曲线和相频特性曲线,并标注出上限频率fH和增益为0dB时的相位。

单位增益即增益=1=0dB

仿真得,最小补偿电容C1=3.5uF。

产生第一个极点角频率的节点一般是电路中阻抗最高的节点,本图中为输出端。

故,补偿电容接在输出电压与地之间。

补偿后V(3)的幅频特性曲线和相频特性曲线:

上限频率为1.9772Hz

0dB相位为-133.9004°

○2密勒补偿

按照图3所示电路,对电路进行密勒补偿,其中Q1和Q5构成补偿支路的电压跟随器。

将输入信号V2和V3的直流电压设置为2V,AC输入幅度都设置为0.5V,相位相差180°

,进行AC仿真分析,通过仿真得到最小补偿电容值,使得输出电压V(3)在单位增益处相位不低于-135°

,提交补偿后V(3)的幅频特性曲线和相频特性曲线,并标注出上限频率fH和增益为0dB时的相位。

若输出电压为V(9),补偿后相位要求相同,通过AC仿真分析得到所需要的最小补偿电容。

图3.多级放大器的密勒补偿

(1)仿真得,最小补偿电容C1=114pF。

上限频率为227.7293Hz

0dB相位为-134.5171°

(2)仿真得,最小补偿电容C1=207pF。

上限频率为135.7625Hz

0dB相位为-134.5228°

4.反馈放大器

图1所示多级放大器具有较高的增益,线性放大时输入动态范围很小。

实际使用中,必

须施加负反馈才能作为线性放大器使用。

在图3的基础上,引入电压串联负反馈,同时改为正负电源供电,如图4所示(密勒补偿电容C1的值请采用实验任务3中得到的结果)。

图4.电压串联负反馈放大器

○1将输入信号V2的直流电压设置为0V,AC输入幅度都设置为1V,进行AC仿真分析,得到输出电压V(3)的幅频特性曲线和相频特性曲线,并在图中标注上限频率fH。

V(3)的幅频特性曲线和相频特性曲线:

上限频率为2.1740MHz

○2按照实验任务2中的分析方法,通过AC仿真得到电路的输出阻抗随频率的变化曲线,并标注100Hz处的值,并与没有施加负反馈的输出阻抗进行对照,结合理论分析解释阻抗的变化。

使用外接源方法测量输出阻抗:

100Hz时的输出阻抗值=404.6480mΩ。

没有施加负反馈的输出阻抗:

分析:

负反馈会使放大器指标趋于理想化,对于电压串联负反馈,输出阻抗会减小。

○3反馈电阻R2和R3的值分别改为10Ω和100Ω,R4的值改为10Ω//100Ω,重复○1的仿真,得到V(3)的幅频特性曲线和相频特性曲线;

同时按照图4中V2的设置条件进行瞬态仿真,得到输出电压V(3)的波形,观察波形是否失真,并给出合理的解释。

输出电压V(3)的波形:

观察波形明显失真,可能是因为输入电压过大或放大倍数太大。

若图4所示反馈放大器电路改为单个15V电源供电,会存在什么问题?

如何修改才能正常工作?

答:

可能会导致U2的基极和发射极间电压不够,使得U2不能工作于放大区。

修改:

在R2之前串联一个大电阻,抬高U2基极电压

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 解决方案 > 学习计划

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1