工程故障分析外文翻译毕业外文翻译中英文翻译Word文档下载推荐.docx
《工程故障分析外文翻译毕业外文翻译中英文翻译Word文档下载推荐.docx》由会员分享,可在线阅读,更多相关《工程故障分析外文翻译毕业外文翻译中英文翻译Word文档下载推荐.docx(8页珍藏版)》请在冰豆网上搜索。
Thescaleandcomplexityofcomputer-basedsafetycriticalsystems,likethoseusedinthetransportandmanufacturingindustries,posesignificantchallengesforfailureanalysis.
Overthelastdecade,researchhasfocusedonautomatingthistask.Inoneapproach,predictivemodelsofsystemfailureareconstructedfromthetopologyofthesystemandlocalcomponentfailuremodelsusingaprocessofcomposition.Analternativeapproachemploysmodel-checkingofstateautomatatostudytheeffectsoffailureandverifysystemsafetyproperties.Inthispaper,wediscussthesetwoapproachestofailureanalysis.WethenfocusonHierarchicallyPerformedHazardOrigin&
PropagationStudies(HiP-HOPS)–oneofthemoreadvancedcompositionalapproaches–anddiscussitscapabilitiesforautomaticsynthesisoffaulttrees,combinatorialFailureModesandEffectsAnalyses,andreliabilityversuscostoptimisationofsystemsviaapplicationofautomaticmodeltransformations.WesummarisethesecontributionsanddemonstratetheapplicationofHiP-HOPSonasimplifiedfueloilsystemforashipengine.Inlightofthisexample,wediscussstrengthsandlimitationsofthemethodinrelationtootherstate-of-the-arttechniques.Inparticular,becauseHiP-HOPSisdeductiveinnature,relatingsystemfailuresbacktotheircauses,itislesspronetocombinatorialexplosionandcanmorereadilybeiterated.Forthisreason,itenablesexhaustiveassessmentofcombinationsoffailuresanddesignoptimisationusingcomputationallyexpensivemeta-heuristics.
1.Introduction
Increasingcomplexityinthedesignofmodernengineeringsystemschallengestheapplicabilityofrule-baseddesignand
classicalsafetyandreliabilityanalysistechniques.Asnewtechnologiesintroducecomplexfailuremodes,classicalmanual
analysisofsystemsbecomesincreasinglydifficultanderrorprone.Toaddressthesedifficulties,wehavedevelopedacomputerisedtoolcalled‘HiP-HOPS’(HierarchicallyPerformedHazardOrigin&
PropagationStudies)thatsimplifiesaspectsoftheengineeringandanalysisprocess.ThecentralcapabilityofthistoolistheautomaticsynthesisofFaultTreesandFailureModesandEffectsAnalyses(FMEAs)byinterpretingreusablespecificationsofcomponentfailureinthecontextofasystemmodel.Theanalysisislargelyautomated,requiringonlytheinitialcomponentfailuredatatobeprovided,thereforereducingthemanualeffortrequiredtoexaminesafety;
atthesametime,theunderlyingalgorithmscanscaleuptoanalysecomplexsystemsrelativelyquickly,enablingtheanalysisofsystemsthatwouldotherwiserequirepartialorfragmentedmanualanalyses.Morerecently,wehaveextendedtheaboveconcepttosolveadesignoptimisationproblem:
reliabilityversuscostoptimisationviaselectionandreplicationofcomponentsandalternativesubsystemarchitectures.HiP-HOPSemploysgeneticalgorithmstoevolveinitialnon-optimaldesignsintonewdesignsthatbetterachievereliabilityrequirementswithminimalcost.Byselectingdifferentcomponentimplementationswithdifferentreliabilityandcostcharacteristics,orsubstitutingalternativesubsystemarchitectureswithmorerobustpatternsoffailurebehaviour,manysolutionsfromalargedesignspacecanbeexploredandevaluatedquickly.Ourhopeisthatthesecapabilities,usedinconjunctionwithcomputer-aideddesignandmodellingtools,allowHiP-HOPStofacilitatetheusefulintegrationofalargelyautomatedandsimplifiedformofsafetyandreliabilityanalysisinthecontextofanimproveddesignprocess.Thisinturnwill,wehope,addressthebroaderissueofhowtomakesafetyamorecontrolledfacetofthedesignsoastoenableearlydetectionofpotentialhazardsandtodirectthedesignofpreventativemeasures.Theutilisationoftheapproachandtoolshasbeenshowntobebeneficialincasestudiesonengineeringsystemsintheshipping[1]andoffshoreindustries[2].Thispaperoutlinesthesesafetyanalysisandreliabilityoptimisationtechnologiesandtheirapplicationinanadvancedandlargelyautomatedengineeringprocess.
2.Safetyanalysisandreliabilityoptimisation
3.SafetyanalysisusingHiP-HOPS
HiP-HOPSisacompositionalsafetyanalysistoolthattakesasetoflocalcomponentfailuredata,whichdescribeshowoutputfailuresofthosecomponentsaregeneratedfromcombinationsofinternalfailuremodesanddeviationsreceivedatthecomponents’inputs,andthensynthesisesfaulttreesthatreflectthepropagationoffailuresthroughoutthewholesystem.Fromthosefaulttrees,itcangeneratebothqualitativeandquantitativeresultsaswellasamultiplefailuremodeFMEA
[35].AHiP-HOPSstudyofasystemdesigntypicallyhasthreemainphases:
_Modellingphase:
systemmodelling&
failureannotation.
_Synthesisphase:
faulttreesynthesis.
_Analysisphase:
faulttreeanalysis&
FMEAsynthesis.
Althoughthefirstphaseremainsprimarilymanualinnature,theotherphasesarefullyautomated.Thegeneralprocessin
HiP-HOPSisillustratedinFig.2below:
Thefirstphase–systemmodelling&
failureannotation–consistsofdevelopingamodelofthesystem(includinghydraulic,electricalorelectronic,mechanicalsystems,aswellasconceptualblockanddataflowdiagrams)andthenannotatingthecomponentsinthatmodelwithfailuredata.ThisphaseiscarriedoutusinganexternalmodellingtoolorpackagecompatiblewithHiP-HOPS.HiP-HOPShasinterfacestoanumberofdifferentmodellingtools,includingMatlabSimulink,Eclipse-basedUMLtools,andparticularlySimulationX.Thelatterisanengineeringmodelling&
simulationtooldevelopedbyITIGmbH[36]withafullyintegratedinterfacetoHiP-HOPS.Thishastheadvantagethatexistingsystemmodels,oratleastmodelsthatwouldhavebeendevelopedanywayinthecourseofthedesignprocess,canalsobere-usedforsafetyanalysispurposesratherthanhavingtodevelopanewmodelspecifictosafety.Thesecondphaseisthefaulttreesynthesisprocess.Inthisphase,HiP-HOPSautomaticallytracesthepathsoffailurepropagationthroughthemodelbycombiningthelocalfailuredataforindividualcomponentsandsubsystems.Theresultisanetworkofinterconnectedfaulttreesdefiningtherelationshipsbetweenfailuresofsystemoutputsandtheirrootcausesinthefailuremodesofindividualcomponents.Itisadeductiveprocess,workingbackwardsfromthesystemoutputstodeterminewhichcomponentscausedthosefailuresandinwhatlogicalcombinations.ThefinalphaseinvolvestheanalysisofthosefaulttreesandthegenerationofanFMEA.Thefaulttreesarefirstminimisedtoobtaintheminimalcutsets–thesmallestpossiblecombinationsoffailurescapableofcausinganygivensystemfailure–andthesearethenusedasthebasisofbothquantitativeanalysis(todeterminetheprobabilityofasystemfailure)andtheFMEA,whichdirectlyrelatesindividualcomponentfailurestotheireffectsontherestofthesystem.TheFMEAtakestheformofatableindicatingwhichsystemfailuresarecausedbyeachcomponentfailure.ThevariousphasesofaHiP-HOPSsafetyanalysiswillnowbedescribedinmoredetail.
4.DesignoptimisationusingHiP-HOPS
HiP-HOPSanalysismayshowthatsafety,reliabilityandcostrequirementshavebeenmet,inwhichcasetheproposedsystemdesigncanberealised.Inpractice,though,thisanalysiswilloftenindicatethatcertainrequirementscannotbemetbythecurrentdesign,inwhichcasethedesignwillneedtoberevised.Thisisaproblemcommonlyencounteredinthedesignofreliableorsafetycriticalsystems.Designersofsuchsystemsusuallyhavetoachievecertainlevelsofsafetyandreliabilitywhileworkingwithincostconstraints.Designisacreativeexercisethatreliesonthetechnicalskillsofthedesignteamandalsoonexperienceandlessonslearntfromsuccessfulearlierprojects,andthusthebulkofdesignwork
iscreative.However,webelievethatfurtherautomationcanassisttheprocessofiteratingthedesignbyaidingintheselectionofalternativecomponentsorsubsystemarchitecturesaswellasinthereplicationofcomponentsinthemodel,allofwhichmayberequiredtoensurethatthesystemultimatelymeetsitssafetyandreliabilityrequirementswithminimalcost.Ahigherdegreeofreliabilityandsafetycanoftenbeachievedbyusingamorereliableandexpensivecomponent,an
alternativesubsystemdesign(e.g.Aprimary/standbyarchitecture),orbyusingreplicatedcomponentsorsubsystemstoachieveredundancyandthereforeensurethatfunctionsarestillprovidedwhencomponentsorsubsystemsfail.Inatypical
systemdesign,however,therearemanyoptionsforsubstitutionandreplicationatdifferentplacesinthesystemanddifferent
levelsofthedesignhierarchy.Itmaybepossible,forexample,toachievethesamereliabilitybysubstitutingtwosensors
inoneplaceandthreeactuatorsinanother,orbyreplicatingasinglecontrollerorcontrolsubsystem,etc.Differentsolutionswill,however,leadtodifferentcosts,andthegoalisnotonlytomeetthesafetygoalsandcostconstraintsbutalsotodosooptimally,i.e.finddesignswithmaximumpossiblereliabilityfortheminimumpossiblecost.Becausetheoptionsforreplicationand/orsubstitutioninanon-trivialdesignaretypicallytoomanytoconsidermanually,itisvirtuallyimpossiblefordesignerstoaddressthisproblemsystematically;
asaresult,theymustrelyonintuition,oronevaluationofafewdifferentdesignoptions.Thismeansthatmanyotheroptions–someofwhicharepotentiallysuperior–areneglected.Automationofthisprocesscouldthereforebehighlyusefulinevaluatingalotmorepotentialdesignalternatives