水处理讲义12Word文件下载.docx
《水处理讲义12Word文件下载.docx》由会员分享,可在线阅读,更多相关《水处理讲义12Word文件下载.docx(10页珍藏版)》请在冰豆网上搜索。
废水的水量、水质及变化规律;
对处理中所产生的污泥的处理要求;
当地的地理位置、地质条件、气候条件等;
当地的施工水平以及处理厂建成后运行管理人员的技术水平等;
工期要求以及限期达标的要求;
综合分析工艺在技术上的可行性和先进性以及经济上的可能性和合理性等;
对于工程量大、建设费用高的工程,则应进行多种工艺流程的比较后才能确定。
四、曝气池的计算与设计
主要内容:
曝气池容积的计算;
需氧量和供气量的计算;
池体设计。
1、曝气池容积的计算:
①计算方法与计算公式
常用的是有机负荷法,有关公式有:
;
②设计参数的选择:
在进行曝气池容积计算时,应在一定范围内合理地确定
或
和
值,以及处理效率、
、
等参数。
2、需氧量与供气量的计算
(1)需氧量:
(kgO2/d)
3、池体尺寸设计:
单元数:
不小于2组;
廊道数:
不少于3个;
廊道长、宽、高:
长=(510)宽,深度一般为45米,超高0.5米;
进出水以及污泥回流方式的设计;
曝气装置的安装方式与位置;
其它附属物的设计(消泡管等)。
五、曝气系统的计算与设计
六、二次沉淀池的计算与设计
二沉池的作用是:
分离泥水、澄清混合液、浓缩和回流活性污泥。
其工作性能的好坏,对活性污泥处理系统的出水水质和回流污泥的浓度有直接影响。
与初沉池相比,二沉池的特点:
活性污泥混合液的浓度较高,有絮凝性能,其沉降属于成层沉淀;
活性污泥的质量较轻,易产生异重流,因此,其最大允许的水平流速(对平流式、辐流式而言)或上升流速(竖流式)都应低于初沉池;
由于二沉池还起着污泥浓缩的作用,所以需要适当增大污泥区的容积。
七、污泥回流系统的计算与设计
八、曝气沉淀池的计算与设计
第六节活性污泥法的运行管理及常见问题与对策
一、活性污泥法的启动与试运行
1、活性污泥的培养与驯化:
接种污泥:
同类污水厂的剩余污泥;
粪便污水等。
方法:
全流量连续直接培养法;
流量分阶段直接培养法;
间歇培养法;
活性污泥的驯化:
a.异步驯化法;
b.同步驯化法
2、活性污泥法的试运行:
试运行的目的是确定最佳的运行条件;
作为变数考虑的因素:
MLSS、空气量、污水注入方式;
如是吸附再生法,则吸附与再生的时间比;
N、P的投加。
根据上述各种参数的组合运行结果,找出最佳运行条件。
二、活性污泥系统重要运行参数的调节与观测
1、对活性污泥状况的镜检观察;
2、对曝气时间(HRT)的调节;
3、对供气量的调节:
4、SV的测定与调节:
5、剩余污泥排放量的调节:
6、回流污泥量的调节
三、活性污泥系统的水质管理
四、活性污泥系统的常见异常现象与对策
1、污泥腐化:
现象:
活性污泥呈灰黑色、污泥发生厌氧反应,污泥中出现硫细菌,出水水质恶化;
原因:
1)负荷量增高;
2)曝气不足;
3)工业废水的流入等;
对策:
1)控制负荷量;
2)增大曝气量;
3)切断或控制工业废水的流入。
2、污泥上浮:
污泥沉淀3060分钟后呈层状上浮,多发生在夏季;
硝化作用导致在二沉池中被还原成N2,引起污泥上浮;
1)减少污泥在二沉池的HRT;
2)减少曝气量。
3、污泥解体:
在沉淀后的上清液中含有大量的悬浮微小絮体,出水透明度下降;
污泥解体;
曝气过度;
负荷下降,活性污泥自身氧化过度;
减少曝气;
增大负荷量。
4、泥水界面不明显:
高浓度有机废水的流入,使微生物处于对数增长期;
污泥形成的絮体性能较差;
降低负荷;
增大回流量以提高曝气池中的MLSS,降低F/M值。
5、污泥膨胀:
是指活性污泥质量变轻、膨大,沉降性能恶化,在二沉池中不能正常沉淀下来,SVI异常增高,可达400以上。
因丝状菌异常增殖而导致的丝状菌性膨胀;
主要是由于丝状菌异常增殖而引起的,主要的丝状菌有:
球衣菌属、贝氏硫细菌、以及正常活性污泥中的某些丝状菌如芽孢杆菌属等、某些霉菌;
1)污泥膨胀理论:
(1)低F/M比(即低基质浓度)引起的营养缺乏型膨胀;
(2)低溶解氧浓度引起的溶解氧缺乏型膨胀;
(3)高H2S浓度引起的硫细菌型膨胀。
2)污泥膨胀的选择性理论:
3)污泥膨胀的对策
①临时控制措施:
(l)污泥助沉法:
①改善、提高活性污泥的絮凝性,投加絮凝剂如:
硫酸铝等;
②改善、提高活性污泥的沉降性、密实性,投加粘土、消石灰等;
(2)灭菌法:
①杀灭丝状菌,如投加氯、臭氧、过氧化氢等的药剂;
②投加硫酸铜,可控制有球衣菌引起的膨胀。
②工艺运行调节措施:
(1)加强曝气:
①加强曝气,提高混合液的DO值;
②使污泥常处于好氧状态,防止污泥腐化,加强预曝气或再生性曝气;
(2)调节运行条件:
①调整进水pH值;
②调整混合液中的营养物质;
③如有可能,可考虑调节水温——丝状菌膨胀多发生在20C以上;
④调整污泥负荷,当超过0.35kgBOD/kgMLSS.d时,易发生丝状菌膨胀。
③永久性控制措施:
对现有设施进行改造,或新厂设计时就加以考虑,从工艺运行上确保污泥膨胀不会发生;
在工艺中增加一个生物选择器,该法主要针对低基质浓度下引起的营养缺乏型污泥膨胀,其出发点就是造成曝气池中的生态环境有利于选择性地发展菌胶团细菌,应用生物竞争的机制抑制丝状菌的过度增殖,从而控制污泥膨胀。
好氧选择器:
在曝气池之前增加一个具有推流特点的预曝气池,其停留时间(HRT为5~30min,多采用20min)的选择非常重要;
缺氧选择器:
高的基质浓度;
菌胶团细菌在缺氧条件下(但有NO3)有比丝状菌高得多的基质利用率和硝酸盐还原率;
厌氧选择器:
其作用机制与缺氧选择器相似,即在厌氧条件下,丝状菌具有较低的多聚磷酸盐的释放速度而受到抑制。
因粘性物质大量积累而导致的非丝状菌性膨胀。
高粘性污泥膨胀:
废水净化效果良好,但污泥难于沉淀,污泥颗粒大量随出水流失;
①进水中溶解性有机物浓度高,F/M值太高;
②氮、磷缺乏,或溶解氧不足;
③细菌将大量有机物吸入体内,不能及时降解,分泌过量的凝胶状的多糖类物质;
④这些物质中含有很多氢氧基而具有很高的亲水性,导致污泥中含有很高的结合水,使泥水分离困难。
降低负荷,调整工况,加强曝气等。
低粘性污泥膨胀:
进水中含有毒性物质,使污泥中毒,使细菌不能分泌出足够的粘性物质,从而不能有效形成絮凝体,导致泥水分离困难;
控制进水水质,加强上游工业废水的预处理。
6、泡沫
主要有两种,即化学泡沫和生物
①化学泡沫
成因:
洗涤剂或工业用表面活性物质等引起,呈乳白色
控制对策:
水冲消泡;
消泡剂
②生物泡沫
诺卡氏菌属的一类丝状菌引起;
呈褐色
问题:
可能致病;
卫生、环境;
影响曝气
水冲或消泡剂无效;
加氯;
排泥,缩短SRT
根本原因:
诺卡氏菌在较高温、富油脂类物质的环境中易于繁殖
(补充第三章中关于活性污泥系统中的异常现象及对策)
1)负荷量增高;
2)曝气不足;
3)工业废水的流入等;
1)控制负荷量;
2)增大曝气量;
3)切断或控制工业废水的流入。
1)减少污泥在二沉池的HRT;
2)减少曝气量。
1)因丝状菌异常增殖而导致的丝状菌性膨胀;
(1)污泥膨胀理论:
①低F/M比(即低基质浓度)引起的营养缺乏型膨胀;
②低溶解氧浓度引起的溶解氧缺乏型膨胀;
③高H2S浓度引起的硫细菌型膨胀。
(2)污泥膨胀的选择性理论:
活性污泥中存在着两大类群微生物,一是菌胶团细菌;
一是丝状菌。
二者的生长速率与基质浓度的关系正好相反,即:
在低基质浓度下,丝状菌的生长速率要高于菌胶团细菌;
而在高基质浓度条件下,菌胶团细菌的生长速率则要高于丝状菌。
在常规的活性污泥系统中,由于需要获得较高的出水水质,即至少在曝气池的出口处要求其中的有机物浓度要达到很低水平,即维持在很低的基质浓度,因此常常会引起丝状菌的生长占优,而引起丝状菌性污泥膨胀的问题。
(3)污泥膨胀的对策
a.污泥助沉法:
b.灭菌法:
a.加强曝气:
b.调节运行条件:
④调整污泥负荷。
永久性控制措施:
a.好氧选择器:
b.缺氧选择器:
c.厌氧选择器:
2)因粘性物质大量积累而导致的非丝状菌性膨胀。
(1)高粘性污泥膨胀:
①进水中溶解性有机物浓度高,F/M值太高;
②氮、磷缺乏,或溶解氧不足;
③细菌将大量有机物吸入体内,不能及时降解,分泌过量的凝胶状的多糖类物质;
④这些物质中含有很多羟基而具有很高的亲水性,导致污泥中含有很高的结合水,使泥水分离困难。
(2)低粘性污泥膨胀:
进水中含有毒性物质,使污泥中毒,使细菌不能分泌出足够的粘性物质,从而不能有效形成絮凝体,导致泥水分离困难;
控制进水水质,加强上游工业废水的预处理。
(1)化学泡沫
(2)生物泡沫
呈褐色。
影响曝气。
排泥,缩短SRT。
诺卡氏菌在较高温、富油脂类物质的环境中易于繁殖。