0818110范仕华论文.docx
《0818110范仕华论文.docx》由会员分享,可在线阅读,更多相关《0818110范仕华论文.docx(35页珍藏版)》请在冰豆网上搜索。
0818110范仕华论文
四川信息职业技术学院
毕业设计说明书
设计(论文)题目:
可调数字钟设计
专业:
应用电子技术
班级:
应电08-3班
学号:
0818110
姓名:
范仕华
指导教师:
李华
二0一0年五月十九日
四川信息职业技术学院毕业设计(论文)任务书
学生
姓名
范仕华
学号
0818110
班级
应电08-3
专业
应用电子技术
设计(或论文)题目
可调数字钟设计
指导教师姓名
职称
工作单位及所从事专业
联系方式
备注
李华
讲师/工程师
四川信息职业技术学院
应用电子技术
设计(论文)内容:
用数电设计数字钟
(1)时的计时要求为“12翻1”,分和秒的计时要求为60进制。
(2)准确计时,以数字形式显示时,分,秒的时间。
(3)校正时间。
(4)主体电路部分的电路主要由振荡电路、计数电路、显示电路以及校时电路四大部分组成。
(5)将设计的电路做成完整的电路图进行仿真、观察功能是否正确。
,该数字钟具有准确计时,以数字形式显示时、分、秒的时间和校时功能。
还有:
定时控制、仿广播电台正点报时、自动报整点时数和触摸报正点的功能。
在电路中,基本功能部分由主体电路实现,而扩展功能部电路实现。
进度安排:
4月2日~25日:
选题及查找相关资料。
4月26日~5月8日:
主要查找与课题相关的资料。
5月9日~16日:
相关资料的整理并对其进行理解。
5月16日~23日:
对毕业论文的资料进行初步的整理。
5月23日~31日:
对论文进行修改。
6月1日~13日:
对毕业论文进行排版及检查排版及类容。
6月14日~20日:
加深对毕业论文的理解准备答辩。
6月21日~30日:
检查毕业设计论文的地方准备答辩7月进行答辩
主要参考文献、资料(写清楚参考文献名称、作者、出版单位):
[1]康华光.电子技术基础.数字部分北京:
高等教育出版社,2000
[2]顾永杰.电工电子技术实训教程.上海:
上海交通大学出版社,1999
[3]陈小虎.电工实习(I).北京:
中国电力出版社,1996
[4]焦辎厚.电子工艺实习教程.哈尔滨:
哈尔滨工业大学出版社,1993
[5]陈坚.电力电子学[M].北京:
高等教育出版社,2002
审
批
意
见
教研室负责人:
年月日
备注:
任务书由指导教师填写,一式二份。
其中学生一份,指导教师一份。
目录
目录I
摘要1
第1章绪论2
第2章系统方案论证与比较3
2.1方案论证与比较3
2.2方案确定4
第3章整机电路设计5
3.1振荡电路5
3.1.1振荡器5
3.1.2分频器6
3.2计数电路9
3.2.160进制计数器9
3.2.2“12翻1”小时计数器电路11
3.3校时电路13
3.3.1电路的工作原理13
3.3.2对电路中所用的主要元件及功能介绍14
3.4译码与显示电路15
3.5定时控制电路16
3.6仿广播电台正点报时电路18
3.6.1功能要求18
3.6.2该电路的工作原理18
3.7自动报整点时数电路18
3.8触摸报整点时数电路20
第4章仿真与调试22
4.1主体电路部分22
4.1.1振荡电路部分22
4.1.2校时电路部分23
4.2扩展电路部分23
4.2.1定时控制23
4.2.2仿广播电台正点报时23
4.2.3触摸报整点时数23
第5章总结26
参考文献27
附录1总电路图28
附录2:
元件明细表................................................................................................................29
摘要
加入世贸组织以后,中国会面临激烈的竞争。
这种竞争将是一场科技实力、管理水平和人才素质的较量,风险和机遇共存,同时电子产品的研发日新月异,不仅是在通信技术方面数字化取代于模拟信号,就连我们的日常生活也进于让数字化取缔。
说明数字时代已经到来,而且渗透于我们生活的方方面面。
就拿我们生活的实例来说明一下“数字”给我们带来的便捷。
下面我们就以数字钟为例简单介绍一下。
数字钟我们听到这几个字,第一反应就是我们所说的数字,不错数字钟就是以数字显示取代模拟表盘的钟表,在显示上它用数字反应出此时的时间,相比模拟钟能给人一种一目了然的感觉,不仅如此它还能同时显示时、分、秒。
而且能对时、分、秒准确校时,这是普通钟所不及的。
与此同时数字钟还能准确定时,在你所规定的时间里准确无误的想你发出报时声音,提醒你在此时所需要去做的事。
与旧式钟表相比它更适用于现代人的生活。
在毕业之际恰好遇上学校的毕业课题电子时钟设计毕业论文。
因而在所学专业的基础上做了以下毕业设计。
希望给大家带来方便的同时,使自己对所学专业有进一步的了解!
关键字 数字钟;校时;时间显示;定时
第1章绪论
中国是世界上最早发明计时仪器的国家。
有史料记载,汉武帝太初年间(纪元前104-101年)由落下闳创造了我国最早的表示天体运行的仪器——浑天仪。
东汉时期(公元130年)张衡创造了水运浑天仪,为世界上最早的以水为动力的观测天象的机械计时器,是世界机械天文钟的先驱。
盛唐时代,公元725年张遂(又称一行)和梁令瓒等人创制了水运浑天铜仪,它不但能演示天球和日、月的运动,而且立了两个木人,按时击鼓,按时打钟。
第一个机械钟的灵魂——擒纵器用于计时器,这是中国科学家对人类计时科学的伟大贡献。
它比十四世纪欧洲出现的机械钟先行了六个世纪。
现在我国的电子业发展非常快速,电子业的发展有利于钟表业的发展。
在中国钟表发展史上,国产机芯研制的失败已经成为过去,“组装业”作为新兴钟表工业的起步阶段也已成为过去。
一支新的充满智慧的钟表精英在成长。
我们相信在科技高速发展的今天,钟表业运用当今材料工业、电子工业和其他领域的最新技术,一定会生产出代表中国科学水平的产品。
我们希望钟表业的精英们在提高制造技术水平中不断创新,培育出拥有自主知识产权的品牌。
这正是中国钟表业发展的希望。
数字钟被广泛用于个人家庭,车站,码头、办公室等公共场所,成为人们日常生活中的必需品。
由于数字集成电路的发展和石英晶体振荡器的广泛应用,使得数字钟的精度,运用超过老式钟表,钟表的数字化给人们生产生活带来了极大的方便,而且大大地扩展了钟表原先的报时功能。
诸如定时自动报警、按时自动打铃、时间程序自动控制、定时广播、自动起闭路灯、定时开关烘箱、通断动力设备、甚至各种定时电气的自动启用等,所有这些,都是以钟表数字化为基础的。
因此,研究数字钟及扩大其应用,有着非常现实的意义。
第2章系统方案论证与比较
2.1方案论证与比较
方案一:
基于FPGA的系统总体设计方法。
为了实现:
(1)显示年、月、日、时、分、秒、星期,并且可以进行调整时间;
(2)可以设定闹钟和整点报时的功能,数字时钟在总体上主要分为三大部分:
输入人机界面部分、FPGA核心功能部分和输出界面部分,其系统设计框图如图所示。
图2-1基于FPGA的系统设计方框图
方案二:
基于数电做数字钟,该数字钟具有基本功能和扩展功能两部分。
其中,基本功能部分的有准确计时,以数字形式显示时、分、秒的时间和校时功能。
扩展功能部分则具有:
定时控制、仿广播电台正点报时、自动报整点时数和触摸报正点的功能。
数字钟的电路也是由主体电路和扩展电路两部分构成,在电路中,基本功能部分由主体电路实现,而扩展功能部电路实现。
这两部分都有一个共同特点就是它们都要用到振荡电路提供的1Hz脉冲信号。
在计时出现误差时电路还可以进行校时和校分,为了使电路简单所设计的电路不具备校秒的功能。
并且要用数码管显示时、分、秒,各位均为两位显示,扩展部分要有相应的响应电路。
数字钟电路系统的组成框图。
图2-2数字电路系统的组成框图
由图2-2可知,电路的工作原理是:
多功能数字钟电路由主体电路和扩展电路两大部分组成。
其中主体电路完成数字钟的基本功能,扩展电路完成数字钟的扩展功能。
振荡器产生的高脉冲信号作为数字钟的振源,再经分频器输出标准秒脉冲。
秒计数器计满60后向分计数器个位进位,分计数器计满60后向小时计数器个位进位并且小时计数器按照“12翻1”的规律计数。
计数器的输出经译码器送显示器。
计时出现误差时电路进行校时、校分、校秒。
扩展电路必须在主体电路正常运行的情况下就能进行扩展功能。
2.2方案确定
数子钟的设计方法很多种,不止上面这两种。
例如可用中小规模集成电路组成电子钟;也可以利用专用的电子钟芯片配以显示电路及其所需要的外围电路组成电子钟;还可以利用单片机来实现电子钟等。
综合考虑以上方案的优缺点以及题目的基本要求和发挥要求,在本设计中,我采用了第二种方案,即采用数电来实现数字时钟的功能。
第3章整机电路设计
在本次设计,整机电路是由许多单元电路组成的,因此首先必须对各个单元电路进行设计。
主体电路部分的电路主要由振荡电路、计数电路、显示电路以及校时电路四大部分组成。
下面将对各部分电路进行设计。
3.1振荡电路
振荡电路由振荡器和分频器产生1Hz时钟脉冲和扩展部分所需的频率,下面对振荡器和分频器两部分进行介绍。
3.1.1振荡器
数字电路中的时钟是由振荡器产生的,振荡器是数字钟的核心。
振荡器的稳定度及频率的精度决定了数字钟计时的准确程度,一般来说,振荡器的频率越高,计时精度越高。
它利用某种反馈方式产生时钟信号。
对数字电路来说,振荡器的输出的幅度范围为0V—5V的方波信号而不是锯齿波、三角波或其他形式。
典型的振荡器是弛豫振荡器,它通过一个RC网络将反相器的输出反馈回来并存在一定的工作延迟时间。
基本的电路如图3-1所示。
图3-1RC-C网络电路
在上述电路中,RI-C网络由第一个反相器驱动,具有RC特性曲线的响应信号被反馈给反相器的输入。
当电容上的电压达到施密特触发器输入反相器的门限电压的时候,反相器的状态发生改变,并输出一个新的电压值。
这个输出电压经过一定的延迟时间再次通过RI—C反馈回来,直到电容电压再次达到门限电压为止。
用施密特触发器输入器件(如74HC04),但是由于电容的参考电压在每个临界点都要发生变化,所以施密特触发器不是必需的。
由于电容与输出相连,每次状态改变时,电容的充电电压会超过5V。
从这一点来说,输出电压会改变电容的充电电压,直到电容两端的电压变为74HC04的门限电压(2.5V)为止。
振荡器输出状态的改变发生在电容上的电压达到2.5V时。
弛豫振荡器对许多低成本而精度要求又不高的场所非常适合,但是并不推荐在任何有精度要求的实际应用电路采用它。
如果想要获得高的精度,就应该在振荡电路中使用石英晶体作振源。
在数字钟的设计与制作中应采用石英晶体振荡器,因为石英晶体具有压电效应,是一个压电器件。
当交流电压加在晶体两端,晶体先随电压变化产生对应的变化,然后机械振动又使晶体表面产生交变电荷。
当晶体几何尺寸和结构一定时,它本生有一个固定的机械频率。
当外加交流电压的频率等于晶体的固有频率时,晶体片的机械振动最大,晶体表面电荷量最多,外电路的交流电流最强,于是产生振荡,因此将石英晶体按一定方位切割成片,两边傅以电极,焊上引线,再用金属或玻璃外壳封装即构成石英晶体。
石英晶体的固有频率十分稳定。
另外石英晶体的振动具有多谐性,除了基频振动外,还有奇次谐次泛音振动,对于石英晶体,既可利用基频振动,也可利用泛音振动。
前者称为基频晶体,后者称为泛音晶体,晶片厚度与振动频率成反比,工作频率越高,要求晶片厚度越薄。
将石英晶体作为高Q值谐振回路元件接入反馈电路中,就组成了晶体振荡器。
在设计中所用的振荡器的电路图如图3-2所示。
该电路能产生1MHz的方波脉冲振荡信号。
图3-2震荡器电路
3.1.2分频器
分频器的作用是将由石英晶体产生的高频信号分频成基时钟脉冲信号和扩展部分所需的频率。
在此电路中,分频器的功能主要有两个:
一是产生标准脉冲信号;二是功能扩展电路所需的信号,如仿电台用的1KHz的高频信号和500Hz的低频信号等.在此电路中作为分频器的元件是:
CD4518。
CD4518可以组成二分频电路和十分频电路。
用CD4518组成二分频的电路如图3-3;用CD4518组成十分频的电路如图3-4;在本次设计中所用的分频器的电路图如图3-5。
电路经过十分频后将晶振来的1MHz的振荡脉冲变为1Hz的脉冲信号,该信号作为计数器的计数脉冲使用。
输入输出输入输出
清零
图3-3二分频电路图3-4十分频电路
图3-5分频器电路
输入
输出
CK
CR
EN
上升沿
L
H
加计数
L
L
上升沿
加计数
下降沿
L
X
保持
X
L
上升沿
上升沿
L
L
H
L
下降沿
X
L
X
全为L
表3-1:
CD4518的功能表
振荡器和分频器两部分构成振荡电路,它的电路图如图3-6所示。
图3-6震荡电路
根据图3-6可知电路的工作原理是:
石英晶体振荡器提供的频率为1MHz,CD4518组成十分频电路。
并且一个CD4518可以组成两个十分频电路即:
CD4518的引脚2与引脚6组成一个十分频电路而引脚10与引脚14组成另一个十分频电路。
晶振的输出接入第一块CD4518的输入引脚2,经过一次十分频,频率变为100KHz。
输出引脚6接入同一块CD4518的引脚10经第二次分频,频率变为10KHz。
输出引脚接人第二块CD4518的输入引脚2再经一次分频,频率变为1KHz。
这样经过六次分频最后可以得到1Hz的频率。
3.2计数电路
计数器是一种计算输入脉冲的时序逻辑网络,被计数的输入信号就是时序网络的时钟脉冲,它不仅可以计数而且还可以用来完成其他特定的逻辑功能,如测量、定时控制、数字运算等等。
数字钟的计数电路是用两个六十进制计数电路和“12翻1”计数电路实现的。
数字钟的计数电路的设计可以用反馈清零法。
当计数器正常计数时,反馈门不起作用,只有当进位脉冲到来时,反馈信号将计数电路清零,实现相应模的循环计数。
以六十进制为例,当计数器从00,01,02,……,59计数时,反馈门不起作用,只有当第60个秒脉冲到来时,反馈信号随即将计数电路清零,实现模为60的循环计数。
下面将分别介绍60进制计数器和“12翻1”小时计数器。
3.2.160进制计数器
电路如图3-7所示
图3-760进制计数器电路
电路中,74LS92作为十位计数器,在电路中采用六进制计数;74LS90作为个位计数器在电路中采用十进制计数。
当74LS90的14脚接振荡电路的输出脉冲1Hz时74LS90开始工作,它计时到10时向十位计数器74LS92进位。
下面对电路中所用的主要元件及功能介绍。
①十进制计数器74LS90
74LS90是二~五~十进制计数器,它有两个时钟输入端CKA和CKB。
其中,CKA和Q0组成一位二进制计数器;CKB和Q3Q2Q1组成五进制计数器;若将Q0与CKB相连接,时钟脉冲从CPA输入,则构成了8421BCD码十进制计数器。
74LS90有两个清零端R0
(1)、R0
(2),两个置9端R9
(1)和R9
(2),其BCD码十进制计数时序如表3-2,二—五混合进制计数时序如表3-3,74LS90的管脚图如图3-8。
图3-874LS90的管脚图
表3-2BCD码十进制计数时序表3-3二—五混合进制计数时序
CK
0
0
0
0
0
1
0
0
0
1
2
0
0
1
0
3
0
0
1
1
4
0
1
0
0
5
0
1
0
1
6
0
1
1
0
7
0
1
1
1
8
1
0
0
0
9
1
0
0
1
CK
0
0
0
0
0
1
0
0
0
1
2
0
0
1
0
3
0
0
1
1
4
0
1
0
0
5
1
0
0
0
6
1
0
0
1
7
1
0
1
0
8
1
0
1
1
9
1
1
0
0
②异步计数器74LS92
所谓异步计数器是指计数器内各触发器的时钟信号不是来自于同一外接输入时钟信号,因而触发器不是同时翻转。
这种计数器的计数速度慢。
一异步计数器74LS92是二—六—十二进制计数器,即CKA和Q0组成二进制计数器,CKB和Q3Q2Q1在74LS92中为六进制计数器。
当CKB和Q0相连,时钟脉冲从CKA输入,74LS92构成十六进制计数器。
74LS92的管脚图如图3-9。
图3-974LS92管脚图
3.2.2“12翻1”小时计数器电路
①电路如图3-10所示
图3-10时计数电路
“12翻1”小时计数器是按照“01-02-03-04-05-06-07-08-09-10-11-12-01”规律计数的,计数器的计数状态转换就是按这样得规律来技术的。
②电路的工作原理
由表可知:
个位计数器由4位二进制同步可逆计数器74LS191构成,十位计数器由双D触发器74LS74构成,将它们组成“12翻1”小时计数器。
由表可知:
计数器的状态要发生两次跳跃:
一是:
计数器计到9,即个位计数器的状态为Q03Q02Q01Q00=1001后,在下一计数脉冲的作用下计数器进入暂态1010,利用暂态的两个1即Q03Q01使个位异步置0,同时向十位计数器进位使Q10=1;二是计数到12后,在第13个计数脉冲作用下个位计数器的状态应为Q03Q02Q01Q00=0001,十位计数器的Q10=0。
第二次跳跃的十位清“0”和个位置“1”的输出端Q10、Q01、Q00来产生。
对电路中所用的主要元件及功能介绍。
1D触发器74LS74
在电路中用到了D触发器74LS74,74LS74的管脚图如图3-11。
图3-1174LS74管脚图
下面将介绍一些有关触发器的内容:
触发器,它是由门电路构成的逻辑电路,它的输出具有两个稳定的物理状态(高电平和低电平),所以它能记忆一位二进制代码。
触发器是存放在二进制信息的最基本的单元。
按其功能可为基本RS触发器触、JK触发器、D触发器和T触发器。
这几种触发器都有集成电路产品。
其中应用最广泛的当数JK触发器和D触发器。
不过,深刻理解RS触发器对全面掌握触发器的工作方式或动作特点是至关重要的。
事实上,JK触发器和D触发器是RS触发器的改进型,其中JK触发器保留了两个数据输入端,而D触发器只保留了一个数据输入端。
D触发器有边沿D触发器和高电平D触发器。
74LS74为一个电平D触发器
②计数器74LS191
74LS191的管脚图如图3-12
图3-1274LS191管脚图
3.3校时电路
图3-13校时电路
3.3.1电路的工作原理
电路如图3-13所示,校时电路的作用是:
当数字钟接通电源或者出现误差时,校正时间。
校时是数字钟应具有的基本功能。
一般电子表都具有时、分、秒等校时功能。
为了使电路简单,在此设计中只进行分和小时的校时。
校时有“快校时”和“慢校时”两种,“快校时”是通过开关控制,使计数器对1Hz校时脉冲计数。
“慢校时”是用手动产生单脉冲作校时脉冲。
图中S1校分用的控制开关,S2(总图)为校时用的控制开关,它们的控制功能如表3-4所示,校时脉冲采用分频器输出的1Hz脉冲,当S1或S2分别为“0”时可以进行“快校时”。
如果校时脉冲由单次脉冲产生器提供,则可以进行“慢校时”。
表3-4校时开关的功能
S1
S2
功能
1
1
计数
1
0
校分
0
0
校时
3.3.2对电路中所用的主要元件及功能介绍
在此电路中,用到的元器件有两块四2输入与非门74LS00、一块六反相器74LS04、两个电容、两个电阻以及两个开关。
(1)四-2输入与非门74LS00
集成逻辑门是数字电路中应用十分广泛最基本的一种器件,为了合理的使用和充分利用其性能,必须对它的主要参数和逻辑功能进行测试。
74LS00与非门的主要参数为:
输出高电平:
指与非门有一个以上输入端接地或接低电平时的输出电平值。
输出低电平:
指与非门的所有输入端均接高电平时的输出电平值。
开门电平:
指与非门输出处于额定低电平时允许输入高电平的最小值。
关门电平:
指与非门输出处于高电平状态时允许输入低电平的最大值。
电压传输特性:
是指门的输出电压随输入电压而变化的曲线,由它可以得到门电路的输出高电平、输出低电平、关门电平和开门电平等。
低电平的输出电源电流;是指输入所有端都悬空,输出端空载时,电源提供器件的电流。
高电平输出电源电流:
是指输出端空载,每个门各有一个以上的输入端接地,电源提供给器件的电流。
低电平输入电流:
是指被测输入端接地,其余输入端悬空时,由被测输入端流出的电流值。
高电平输入电流:
指被测输入端接高电平,其余输入端接地,流入被测输入端的电流值。
扇出系数:
门电路能驱动同类门的个数,它是衡量门电路负载能力的一个参数,TTL与非门有两种不同性质的负载,即灌电流负载和拉电流负载,因此有两种扇出系数。
即低电平扇出系数和高电平扇出系数。
3.4译码与显示电路
图3-14译码与显示电路
译码是编码的相反过程,译码器是将输入的二进制代码翻译成相应的输出信号以表示编码时所赋予原意的电路。
常用的集成译码器有二进制译码器、二—十制译码器和BCD—7段译码器、显示模块用来显示计时模块输出的结果(电路如图3-14所示)。
(1)译码器74LS48
译码器是一个多输入、多输出的组合逻辑电路。
它的工作是把给定的代码进行“翻译”,变成相应的状态,使输出通道中相应的一路有信号输出。
译码器在数字系统中有广泛的用途,不仅用于代码的转换、终端的数字显示,还用于数字分配,存储器寻址和组合控制信号等。
译码器可以分为通用译码器和显示译码器两大类。
在电路中用的译码器是共阴极译码器74LS48,用74LS48把输入的8421BCD码ABCD译成七段输出a-g,再由七段数码管显示相应的数。
74LS48的管脚图如图3-15。
在管脚图中,管脚LT、RBI、BI/RBO都是低电平是起作用,作用分别为:
LT为灯测检查,用LT可检查七段显示器个字段是否能正常被点燃。
BI是灭灯输入,可以使显示灯熄灭。
RBI是灭零输入,可以按照需要将显示的零予以熄灭。
BI/RBO是共用输出端,RBO称为灭零输出端,可以配合灭零输出端RBI,在多位十进制数表示时,把多余零位熄灭掉,以提高视图的清晰度。
也可用共阴译码器74LS248,CD4511。
图3-1574LS48管脚图
(2)显示器SM421050N
在此电路图中所用的显示器是共阴极形式,阴极必须接地。
SM421050N的管脚功能如图3-16所示。
图3-16SM421050N管脚图
主体电路部分是由上面的以上的各个单元电路组成的。
3.5定时控制电路
数字钟在指定的时刻发出信号,或驱动音响电路“闹时”;或对某装置的电源进行接通或断开“控制”。
不管是闹时还是控制,都要求时间准确,即信号的开始时刻与持续时间必须满足规定的要求。
①设计电路如图3-17所示
图3-17定时控制电路
②电路的工作原理
在这里将举例来说明它的工作原理。
要求上午7时