优质文档初中图形与几何知识整理精选word文档 10页Word文档下载推荐.docx

上传人:b****6 文档编号:16883649 上传时间:2022-11-26 格式:DOCX 页数:8 大小:18.79KB
下载 相关 举报
优质文档初中图形与几何知识整理精选word文档 10页Word文档下载推荐.docx_第1页
第1页 / 共8页
优质文档初中图形与几何知识整理精选word文档 10页Word文档下载推荐.docx_第2页
第2页 / 共8页
优质文档初中图形与几何知识整理精选word文档 10页Word文档下载推荐.docx_第3页
第3页 / 共8页
优质文档初中图形与几何知识整理精选word文档 10页Word文档下载推荐.docx_第4页
第4页 / 共8页
优质文档初中图形与几何知识整理精选word文档 10页Word文档下载推荐.docx_第5页
第5页 / 共8页
点击查看更多>>
下载资源
资源描述

优质文档初中图形与几何知识整理精选word文档 10页Word文档下载推荐.docx

《优质文档初中图形与几何知识整理精选word文档 10页Word文档下载推荐.docx》由会员分享,可在线阅读,更多相关《优质文档初中图形与几何知识整理精选word文档 10页Word文档下载推荐.docx(8页珍藏版)》请在冰豆网上搜索。

优质文档初中图形与几何知识整理精选word文档 10页Word文档下载推荐.docx

  ①同位角相等,两直线平行;

  ②内错角相等,两直线平行;

  ③同旁内角互补,两直线平行;

  平行线的特征:

  ①两直线平行,同位角相等;

  ②两直线平行,内错角相等;

  ③两直线平行,同旁内角互补;

  平行公理:

经过直线外一点有且只有一条直线平行于已知直线。

  (3)三角形

  三角形的三边关系定理及推论:

三角形的两边之和大于第三边,两边之差小于第三边;

  三角形的内角和定理:

三角形的三个内角的和等于;

  三角形的外角和定理:

三角形的一个外角等于和它不相邻的两个的和;

  三角形的外角和定理推理:

三角形的一个外角大于任何一个和它不相邻的内角;

  三角形的三条角平分线交于一点(内心);

  三角形的三边的垂直平分线交于一点(外心);

  三角形中位线定理:

三角形两边中点的连线平行于第三边,并且等于第三边的一半;

  全等三角形的判定:

  ①边角边公理(SAS)

  ②角边角公理(ASA)

  ③角角边定理(AAS)

  ④边边边公理(SSS)

  ⑤斜边、直角边公理(HL)

  等腰三角形的性质:

  ①等腰三角形的两个底角相等;

  ②等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(三线合一)

  等腰三角形的判定:

  有两个角相等的三角形是等腰三角形;

  直角三角形的性质:

  ①直角三角形的两个锐角互为余角;

  ②直角三角形斜边上的中线等于斜边的一半;

  ③直角三角形的两直角边的平方和等于斜边的平方(勾股定理);

  ④直角三角形中角所对的直角边等于斜边的一半;

  直角三角形的判定:

  ①有两个角互余的三角形是直角三角形;

  ②如果三角形的三边长a、b、c有下面关系,那么这个三角形是直角三角形(勾股定理的逆定理)。

  三角形知识点、概念总结

  1.三角形:

由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

  2.三角形的分类

  3.三角形的三边关系:

三角形任意两边的和大于第三边,任意两边的差小于第三边。

  4.高:

从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

  5.中线:

在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。

  6.角平分线:

三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

  7.高线、中线、角平分线的意义和做法

  8.三角形的稳定性:

三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。

  9.三角形内角和定理:

三角形三个内角的和等于180°

  推论1直角三角形的两个锐角互余

  推论2三角形的一个外角等于和它不相邻的两个内角和

  推论3三角形的一个外角大于任何一个和它不相邻的内角;

三角形的内角和是外角和的一半

  10.三角形的外角:

三角形的一条边与另一条边延长线的夹角,叫做三角形的外角。

  11.三角形外角的性质

  

(1)顶点是三角形的一个顶点,一边是三角形的一边,另一边是三角形的一边的延长线;

  

(2)三角形的一个外角等于与它不相邻的两个内角和;

  (3)三角形的一个外角大于与它不相邻的任一内角;

  (4)三角形的外角和是360°

  四边形(含多边形)知识点、概念总结

  一、平行四边形的定义、性质及判定

  1.两组对边平行的四边形是平行四边形。

  2.性质:

  

(1)平行四边形的对边相等且平行

  

(2)平行四边形的对角相等,邻角互补

  (3)平行四边形的对角线互相平分

  3.判定:

  

(1)两组对边分别平行的四边形是平行四边形

  

(2)两组对边分别相等的四边形是平行四边形

  (3)一组对边平行且相等的四边形是平行四边形

  (4)两组对角分别相等的四边形是平行四边形

  (5)对角线互相平分的四边形是平行四边形

  4.对称性:

平行四边形是中心对称图形

  二、矩形的定义、性质及判定

  1.定义:

有一个角是直角的平行四边形叫做矩形

矩形的四个角都是直角,矩形的对角线相等

  

(1)有一个角是直角的平行四边形叫做矩形

  

(2)有三个角是直角的四边形是矩形

  (3)两条对角线相等的平行四边形是矩形

矩形是轴对称图形也是中心对称图形。

  三、菱形的定义、性质及判定

有一组邻边相等的平行四边形叫做菱形

  

(1)菱形的四条边都相等

  

(2)菱形的对角线互相垂直,并且每一条对角线平分一组对角

  (3)菱形被两条对角线分成四个全等的直角三角形

  (4)菱形的面积等于两条对角线长的积的一半

  2.s菱=争6(n、6分别为对角线长)

  

(1)有一组邻边相等的平行四边形叫做菱形

  

(2)四条边都相等的四边形是菱形

  (3)对角线互相垂直的平行四边形是菱形

菱形是轴对称图形也是中心对称图形

  四、正方形定义、性质及判定

有一组邻边相等并且有一个角是直角的平行四边形叫做正方形

  

(1)正方形四个角都是直角,四条边都相等

  

(2)正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角

  (3)正方形的一条对角线把正方形分成两个全等的等腰直角三角形

  (4)正方形的对角线与边的夹角是45°

  (5)正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形

  

(1)先判定一个四边形是矩形,再判定出有一组邻边相等

  

(2)先判定一个四边形是菱形,再判定出有一个角是直角

正方形是轴对称图形也是中心对称图形

  五、梯形的定义、等腰梯形的性质及判定

一组对边平行,另一组对边不平行的四边形是梯形.两腰相等的梯形是等腰梯

  形.一腰垂直于底的梯形是直角梯形

  2.等腰梯形的性质:

等腰梯形的两腰相等;

同一底上的两个角相等;

两条对角线相等

  3.等腰梯形的判定:

两腰相等的梯形是等腰梯形;

同一底上的两个角相等的梯形是等腰梯形;

两条对角线相等的梯形是等腰梯形

等腰梯形是轴对称图形

  六、三角形的中位线平行于三角形的第三边并等于第三边的一半;

梯形的中位线平行于梯形的两底并等于两底和的一半。

  七、线段的重心是线段的中点;

平行四边形的重心是两对角线的交点;

三角形的重心是三条中线的交点。

  八、依次连接任意一个四边形各边中点所得的四边形叫中点四边形。

  九、多边形

  1.多边形:

在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。

  2.多边形的内角:

多边形相邻两边组成的角叫做它的内角。

  3.多边形的外角:

多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。

  4.多边形的对角线:

连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。

  5.多边形的分类:

分为凸多边形及凹多边形,凸多边形又可称为平面多边形,凹多边形又称空间多边形。

多边形还可以分为正多边形和非正多边形。

正多边形各边相等且各内角相等。

  6.正多边形:

在平面内,各个角都相等,各条边都相等的多边形叫做正多边形。

  7.平面镶嵌:

用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面。

  8.公式与性质

  多边形内角和公式:

n边形的内角和等于(n-2)·

180°

  9.多边形外角和定理:

  

(1)n边形外角和等于n·

-(n-2)·

=360°

  

(2)边形的每个内角与它相邻的外角是邻补角,所以n边形内角和加外角和等于n·

  10.多边形对角线的条数:

  

(1)从n边形的一个顶点出发可以引(n-3)条对角线,把多边形分词(n-2)个三角形

  

(2)n边形共有n(n-3)/2条对角线

  圆知识点、概念总结

  1.不在同一直线上的三点确定一个圆。

  2.垂径定理:

垂直于弦的直径平分这条弦并且平分弦所对的两条弧

  推论1①(不是直径)的直径垂直于弦,并且平分弦所对的两条弧

  ②弦的垂直平分线经过圆心,并且平分弦所对的两条弧

  ③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

  推论2圆的两条平行弦所夹的弧相等

  3.圆是以圆心为对称中心的中心对称图形

  4.圆是定点的距离等于定长的点的集合

  5.圆的内部可以看作是圆心的距离小于半径的点的集合

  6.圆的外部可以看作是圆心的距离大于半径的点的集合

  7.同圆或等圆的半径相等

  8.到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

  9.定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等

  10.推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。

  11.定理:

圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角

  12.①直线L和⊙O相交d

  ②直线L和⊙O相切d=r

  ③直线L和⊙O相离d>

r

  13.切线的判定定理:

经过半径的外端并且垂直于这条半径的直线是圆的切线

  14.切线的性质定理:

圆的切线垂直于经过切点的半径

  15.推论1经过圆心且垂直于切线的直线必经过切点

  16.推论2经过切点且垂直于切线的直线必经过圆心

  17.切线长定理:

从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角

  18.圆的外切四边形的两组对边的和相等,外角等于内对角

  19.如果两个圆相切,那么切点一定在连心线上

  20.①两圆外离d>

R+r

  ②两圆外切d=R+r

  ③两圆相交R-rr)

  ④两圆内切d=R-r(R>

r)⑤两圆内含dr)

  21.定理:

相交两圆的连心线垂直平分两圆的公共弦

  22.定理:

把圆分成n(n≥3):

  

(1)依次连结各分点所得的多边形是这个圆的内接正n边形

  

(2)经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形

  23.定理:

任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆

  24.正n边形的每个内角都等于(n-2)×

/n

  25.定理:

正n边形的半径和边心距把正n边形分成2n个全等的直角三角形

  26.正n边形的面积Sn=pnrn/2p表示正n边形的周长

  27.正三角形面积√3a/4a表示边长

  28.如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°

,因此k×

(n-2)180°

/n=360°

化为(n-2)(k-2)=4

  29.弧长计算公式:

L=n兀R/180

  30.扇形面积公式:

S扇形=n兀R^2/360=LR/2

  31.内公切线长=d-(R-r)外公切线长=d-(R+r)

  32.定理:

一条弧所对的圆周角等于它所对的圆心角的一半

  33.推论1同弧或等弧所对的圆周角相等;

同圆或等圆中,相等的圆周角所对的弧也相等

  34.推论2半圆(或直径)所对的圆周角是直角;

90°

的圆周角所对的弦是直径

  35.弧长公式l=a*ra是圆心角的弧度数r>

0扇形面积公式s=1/2*l*r

以下文字用于测试排版效果,使用时请删除!

一路眺望,才真正明白了什么叫山峦起伏、沟壑纵横。

高速公路大都在半山腰劈山而建,一面靠山,一面临渊,逢山开洞,遇壑架桥。

因此,形成了青兰高速的一大特点----桥多、隧道多。

隧道短的三、五百米,长则四、五千米。

穿行在隧道中,让人产生穿越时空的感觉。

此时正是五花山的季节,层林尽染的山峰,因断崖或开矿裸露出斑驳陆离的黄色山体,但仍不失为美丽。

车行近3小时,进入壶口瀑布景区。

天降小雨,景区停车场由砂石铺垫,有些泥泞,与想象中的景象差距较大。

从停车场坐景区中巴行程十几分钟到达景点,景点入口离壶口瀑布里许路,放眼望去,黄河水面虽宽,但流水缓慢,中间断流,河水平地消失不见了踪迹,只是隐隐约约传来隆隆的响声。

第一感观:

“平淡无奇”,心中不免有些失望。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 文学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1