ansys桥梁计算常用的计算方法Word下载.docx

上传人:b****4 文档编号:16688407 上传时间:2022-11-25 格式:DOCX 页数:24 大小:37.07KB
下载 相关 举报
ansys桥梁计算常用的计算方法Word下载.docx_第1页
第1页 / 共24页
ansys桥梁计算常用的计算方法Word下载.docx_第2页
第2页 / 共24页
ansys桥梁计算常用的计算方法Word下载.docx_第3页
第3页 / 共24页
ansys桥梁计算常用的计算方法Word下载.docx_第4页
第4页 / 共24页
ansys桥梁计算常用的计算方法Word下载.docx_第5页
第5页 / 共24页
点击查看更多>>
下载资源
资源描述

ansys桥梁计算常用的计算方法Word下载.docx

《ansys桥梁计算常用的计算方法Word下载.docx》由会员分享,可在线阅读,更多相关《ansys桥梁计算常用的计算方法Word下载.docx(24页珍藏版)》请在冰豆网上搜索。

ansys桥梁计算常用的计算方法Word下载.docx

二、常见桥梁连接部位

在桥梁建立模型时要准确模拟边界条件,因此要准确分析连接部位的固有特性。

(一)常见桥梁连接部位

1.固定支座、铰支、可滑移支座等空间支座系统。

2.带减振和隔振措施的减振支座系统。

3.地基―主体之间桩-基系统。

4.刚构之间的螺栓连接、铆接等。

5.梁管之间的球接和铰接等。

(二)连接部分解决方法

Ansys在解决桥梁不同的连接部位时可选用如下的方法:

1.Combin7、Combin40、Linkll、Contact52、Combine38弹簧(阻尼、间隙元):

可用来模拟支座、绳索、拉杆等桥梁部件。

2.预紧单元可解决螺栓、铆钉连接的问题。

3.二力杆拉杆、索可解决拉索问题。

4.耦合与约束方程可解决梁与塔横梁的边界约束关系。

5.接触单元如Contact52可模拟滑动支座、销接等部件的真实情况。

(三)常见桥梁接触问题

桥梁各个部分之间可能存在如下三种接触方式。

1.滑移连接:

点点接触。

2.绑定连接:

点面接触。

3.转动连接:

面面接触。

用接触单元可模拟如:

滑移支座接触、挡块与其他部件的接触、振动时不同构件的碰撞等问题,这里不再一一赘述。

三、桥梁基础的处理方式

为了真实的模拟桥梁的实际情况,需要真实模拟桥梁的基础受力、变形及约束情况,建议建立模型时采用如下方案。

1.基础平台与桩基:

用实体模型、预应力配筋。

2.基础与岩土系统:

有限区域实体模型、预应力配筋。

***桥梁常见模型处理

一、桥梁中常用的模型可以用相应的单元

1.刚构桥、拱桥:

梁与杆单元组合模型。

2.钢管混凝土:

复合截面梁模型。

3.连续梁:

梁模型。

4.斜拉桥/悬索桥:

梁、板壳、索或杆单元组合模型。

5,立交桥:

实体墩、板壳桥面和加强梁混合模型。

6.局部详细计算:

实体(考虑配筋)或板模型,以便考虑模型细节特征,如结构尺寸构造倒角、厚薄或粗细过度、凹凸部分以及配筋等。

二、桥梁建模要综合运用各种合适的单元

对桥梁进行总体分析应该遵循如下原则:

1.支座系统采用弹簧―阻尼系统;

2.连接部位采用耦合与约束方程;

3.桥墩系统采用截面梁、配筋梁;

4.桥面系统采用截面梁、配筋梁、板壳、梁板组合。

对桥梁进行局部分析应该遵循如下原则:

1.支座系统采用实体模型:

粘弹(粘塑、超弹、塑性)大变形(位移);

2.连接部位采用接触模型:

实体、板壳、梁或组合模型;

3.桥墩系统采用实体模型:

配筋与混凝土破坏;

4.桥面系统采用实体或板壳:

配筋与混凝土破坏,组合梁之间的耦合与约束方程。

三、选用合适的分析方法、

在对桥梁进行建模计算时对不同的计算目的要采取不同的计算步骤。

(一)静态计算

1.根据分析类型承载特点建立合理梁、板、实体、拉杆(模拟索)模型;

2.材料与几何非线性效应;

3.连接部位与支座的正确处理。

(二)动力分析

1.尽量采用梁、板壳或二者组合模型;

2.附属结构简化为质点,建立与总体结构耦合关系;

3.连接部位与支座自由度协调合理;

4.应当考虑大变形、初应力以及预张力的动力影响;

5.必须正确考虑阻尼效应;

6.材料与几何非线性效应。

施加预应力的方式

一、预应力的模拟方式

Ansys里加预应力有几种方式:

1.直接在单元中加,(Linkl0等单元可以通过Real实常数来加)。

2.用F加力,然后在分析时打开Prestl~ss,加。

3.用温度变化模拟。

在常用的软件系统中,预应力混凝土分析根据作用不妨分为两类:

分离式和整体式。

所谓分离式就是将混凝土和力筋的作用分别考虑(脱离体),以荷载的形式取代预应力钢筋的作用,典型.的如等效荷载法;

而整体式则是将二者的作用一起考虑,典型的如Ansys中用Link单元模拟力筋的方法。

(一)线性或非线性的考虑

对于预应力混凝土结构,只要是开裂前阶段的应力分析,完全可以将混凝土视为弹性材料,当然钢筋也是弹性材料,这主要在使用荷载阶段的应力分析。

假如要进行开裂和极限分析,则必须考虑二者的非线性特性。

(二)分离式方法(等效荷载法)的特点

主要优点是建模简单,不必考虑力筋的位置而可直接建模,当然网格划分也简单,对结构在预应力作用下的整体效应可比较快捷地掌握。

其缺点是比较明显的:

①不便模拟细部,例如力筋所在位置对结构的影响显然是不同的,假如

一定要模拟,则荷载必须施加在力筋的位置上,故其建模的方便性就消失

了;

②等效荷载法没有考虑力筋对混凝土的作用分布和方向,力筋对混凝土作用显然在各处是不同的,而等效荷载法则没有计及此点;

③对张拉过程无法模拟;

④在其他外荷载作用下的共同作用不便考虑,否则要加入力筋(其建模则同整体式),不能确定力筋在外荷载作用下的应力增量;

⑤可以模拟应力损失的影响。

但是对于只关注预应力混凝土结构的基本性能时,可以考虑采用等效荷载法。

(三)整体式方法的特点

将混凝土和力筋划分为不同的单元‘逛考虑,而模拟预应力可以采用降温方法和初应变方法。

降温方法比较简单,同时可以模拟力筋的损失,单元和实常数几种即可;

而采用初应变又要模拟力筋各处不同的应力时,每个单元的实常数各不相等,工作量较大。

所以比较而言,采用整体式时考虑降温方法为宜。

主要缺点是建模不便,尤其是当力筋较多且曲线布筋时(可以采用APDL解决);

其优点也比较明显:

①力筋的具体位置一定,对结构的影响可全面的考虑;

②力筋对混凝土的作用近似的得到考虑(在结点处);

③可以模拟张拉不同的力筋,以优化张拉顺序;

④不管何种荷载,都是力筋和混凝土共同承担的,可以得到力筋在任何荷载下的应力;

但在后张法中有几个问题是应该考虑的(当然可以不予理睬):

①力筋的滑动问题。

在张拉过程中,力筋与混凝土之间没有粘结,存在接触和滑动,而张拉完毕后,一般又都建立了粘结。

这个问题可以这样考虑,因为分析总是张拉完毕(哪怕是某一束),这时显然没有滑动问题了,即可以按有粘结处理;

而在荷载作用下有了粘结,自然可以按有粘结处理。

②在张拉完毕后力筋的应力是已知的,在分析时输入降温也是按张拉应力反算的,计算后力筋的应力显然不等于张拉应力。

这里有弹性压缩的问题,即降温应该计人混凝土弹性压缩损失,你可以考虑增大一定的比例,然后降温计算,二者相符或差别合适时认可。

综上,类似计算分析,建议采用整体式之降温模拟方法。

二、建立预应力的模型

在模拟预应力钢筋时,传统的方式是把预应力钢筋作为体积的边界,把混凝土体积分割开来,Glue后划分混凝土单元,边界就作为Link或Beam单元了。

普通钢筋可以用Solid65的分布钢筋模拟,其实常数数据很简单。

Solid65单元模拟精度很高,只要各材料参数取的正确就可以十分好地模拟混凝土构件加载到变形开裂破坏的全过程,与实验数据十分接近。

但是要注意混凝土的取值,弹性模量抗压强度不能取规范值,要用实验公式。

在模拟钢筋混凝土的时候,一般的建模做法是:

先建立体,然后使用面去切割体,把体切割成几个部分,在各个部分之间有共用的边界线,把这些边界线定义成Link单元,这样就在体单元内建立于Link单元。

因为Link单元就在Solid体单元的边界线上,这样在网格划分的时候两种单元会产生共同的节点,也就可以共同工作了。

土和砼的模拟

***土弹簧的模拟

Linkl0相当于用杆件提供约束,只不过此类单元可以设为只能受拉或只能受压。

如果混凝土与节点底板分离,单元将不起作用,否则Hnkl0单元要承受拉力。

如果用Linkl0的话,你可以把不与结构相联接的一端所有自由度都约束,与结构连接二端是否约束则看结构的具体情况,与Linkl0无关。

Linkl0单元只能提供轴向位移的约束,不可抗剪。

刚度可以这样算,KxA/L,不与结构连接的节点可取沿约束方向上的任意位置。

两节点确定后,A是定的。

你只要保证K的值没错,愿意怎样组合都行。

至于特定问题,可以定义两种Linkl0单元,第一种只能受拉,第二种只能受压。

当然ElementTypeNumber(单元类型指代号码)是不同的。

如果你担心自己两种容易搞错,可以只定义一种Linkl0单元,把第二种的节点取约束的反方向即可。

***混凝土的模拟

Ansys的Soiid65单元是专为混凝土、岩石等抗压能力远大于抗拉能力的非均匀材料开发的单元。

它可以模拟混凝土中的加强钢筋,以及材料的拉裂和压溃现象。

钢筋混凝土有限元有三种基本模型:

分离式、组合式和整体式。

Solid65单元采用Q6是整体式有限元模型,即将钢筋弥散于整个单元中,将加筋混凝土视为连续均匀材料,求出的是一个统一的刚度矩阵。

Solid65单元中的钢筋采用实常数的方法进行添加,钢筋的尺寸由混凝土的体积比确定。

可以得到三种钢筋,这三种钢筋可以具有不同的材料,不同的方向。

从抗剪的角度出发,箍筋在截面的位置可以是任意的,因此这种方法对于钢筋混凝土中均匀分布的箍筋的设置比较适合。

但与纵筋的实际情况却有一定的距离,下面这两种方法可以更好地模拟纵筋的受力情况:

(1)将纵筋密集的区域设置为不同的体,使用带筋的Solid65单元,而无纵筋区则设置为无筋65单元,这样就可以将钢筋区域缩小,接近真实的工程情况。

(2)采用杆单元来模拟纵筋,即采用分离式的有限元模型。

为了建模方便,可将实体分为几个部分,使其交线为纵筋位置,这样就可以对交线划分籽单元。

此时,还可以对杆施加预应力来模拟预应力混凝土。

工况组合

荷载工况组合是荷载工况之间的运算,典型情况为当前在数据库中的荷载工况和在另外一结果文件中的荷载工况间的运算,运算结果将改写数据库中的结果数据部分,可以显示及列出荷载工况组合。

一、典型的荷载工况步骤

组合包括以下几步:

1.用kcdef命令定义荷载工况,kcdef,Lcno,Lstep,Sbstep,Kimg

2.用I_case命令将荷载工况一读人数据库Lease,Lcno

3.用Lcoper命令执行所需的运算Looper,Oper,Lcasel,Oper2,Lcase2

下面举例说明一下工况的具体应用。

假设结果文件包括针对几个荷载步的结果,若想比较荷载步5和荷载步7,并将最大值存人内存,做法如下:

l_cdef,1,5将荷载工况1指向荷载步5

kcdef,2,7将荷载工况2指向荷载步7

Lease,1将荷载工况1读人内存

I_cover,Max,2与荷载工况2比较数据库并将最大值存人内存。

Lcwrite,12写当前荷载工况到文件Jobname.L12

Lcae,3将荷载工况3读人内存

I_coper,Add,12在Jobname.L12文件中将数据库追加到荷载工况中

二、存储组合后的荷载工况

缺省情况下,荷载工况组合的结果存在内存中,并覆盖数据库中的结果部分。

要保存这些结果,作为以后浏览或以后的荷载工况组合,用下列方法之一:

1.将数据写到荷载工况文件中。

2.将数据追加到结果文件中用kcwrite,Lcno,Fname,Ext,Dir命令把当前内存中的荷载工况写到荷载工况文件中。

用kcwrite命令把当前内存中的荷载工况写到荷载工况文件中。

文件名为Jobname.Lnn。

这里皿为分配的荷载工况号。

在后续的荷载工况组合中皿指的是存人荷载工况文件的荷载工况。

例如有这样的问题:

工况1是自重,工况2是集中荷载F,工况3二1.5倍的工况1+1.1倍的工况2,这个工况3如何定义?

可通过荷载步定义。

在NO.3STEP定义1.5倍的工况1;

NO.4STEP定义1.1倍的工况2;

NO.5SETP定义NO.3+NO.4+…,其中1.1和1.5的系数可在荷载步中的选项中定义。

也可对每种荷载分别定义为一种loadcase,然后在通用后处理器/postl中进行组合。

风荷载的确定

首先要确定场地的风特性、平均风速、谱特性等,将紊流风速分解为定常平均风分量和相应的紊动分量U+u(‘)。

平均风速可由地表条件根据对数律得出。

“(c)就是要模拟的紊流风速序列。

有了其谱特性,可以生成大气边界层紊流的人工风速序列,这是做结构风振计算的重要步骤。

目前的随机序列拟合法有基于FOURIER分析的波叠加法和时间序列理论的ARMA模型法,都是生成具有目标风速谱的高斯平稳序列。

有实测得来的风速序列最好,但通常是用模拟的风速序列作为输入。

模拟出的人工紊流序列要尽可能地符合实际大气边界层紊流特性,才能保证计算结果的合理性。

目前为止都是以紊流目标谱或相关作为拟合目标,对多点则是相关矩阵或互谱矩阵。

作随机响应分析PSD是很好的办法,基于大量实测资料而统计出的谱本身就是作随机响应分析的很好输入,比单纯的一条序列更有代表性。

但由于随机计算难以考虑非线性,故生成具体的随机序列作为输入,用有限元法计算动力响应是更普遍的方法。

常用于结构设计的谱公式有:

Davenport谱,Kaimal谱,Karman谱等。

谱拟合:

不仅在风工程中有应用,在人工地震波和人工海浪波生成中也有应用。

相应方法与风序列的生成大同小异。

地震波的输入

对于地震波的输入,可以把荷载记录做成文件,利用Apdl的读取功能读人数据库中。

下面的例子是自己编的一个小文件,修改一下可以更简洁。

地震波时程记录分成了3个文件,每个文件是一列,分别记录z、y、z方向的加速度。

这样就可以把加速度记录读取到Ansys数据库中作为数组。

也可以把加速度记录做成一个文件,这样程序就简单多了。

下面是计算部分语句:

/Solu!

进入求解模块

Antype,Trans!

求解类型为瞬态

Tm―Start=0.011开始时间

Tm―End=15.0011结束时间

Tm―Incr=0.011时间步长

Do,TM,TMStart,TMEnd,TMlncr!

循环

Time,0.05!

指定时间

alpha,!

指定质量矩际系数

iBetad,!

指定刚度矩际系数

Aeel,Acex(),Acey(),Acez()!

指定力p速度大小

Solve!

求解

Enddo!

结束循环

exit!

退出求解模块

初应力荷载

在作桥梁设计时,为了验证结构的可靠度,往往需要对结构施加初应力荷载。

在进行结构分析时,Ansys中可以使用输入文件来把初应力指定为一种荷载。

初应力荷载只许用于静态和完全瞬态分析中(分析可以是线性或非线性的)。

初应力只能在分析的第一个荷载步中施加,用[stile命令来指定、列表和删除初应力。

该命令只能用于/Solution处理器中。

Isfile命令的loc变元用于指定这些初应力的位置。

初应力可指定在单元的中心或单元积分点处,koc的缺省值0对应于单元中心,koc:

1对应于单元积分点。

对于网格中的每个个别单元,也可以通过Loc=2来指定不同的初应力位置。

在这种情况下,每个单元的初应力位置将用个别单元的局部位置标志记录在初应力文件中。

如二3指定网格中的每一个单兀的初应力状态都是相同的。

对于这种情况,对所有单元只需指定一个应力张量。

只有单元类型Plane2、Plane42、Solid45、Plane82、Solid92、Solid95、SheHl81、Planel82、Planel83、Solidl85、Solidl86、Solidl87,Beaml88和Beaml89支持初应力输入功能。

Beam单元和Shdl单元的初应力必须在所有域段的积分点处指定。

要使用[stile命令,初应力必须列在一个外部ASCII文件中,初应力文件中的注释用“!

”标记在注释行的第一个字符处指定。

每个单元记录的第一行应该由字符串"

ELS"

开头,后面跟单元号和任意的局部位置标志,这些项必须用逗号隔开。

如果[stile命令的变元koc的值为0、1或3,则局部位置标志将被忽略。

如果koc二2,则必须对每一个单元指定局部位置标志。

局部位置标志必须是下面的一个值:

对于单元中心(缺省)为0,对于积分点为1。

任何的其他值都会产生错误并使得Isfile命令被忽略。

每个单元记录的第一行后面紧跟的一行指定单元的每一个应力点的单元应力记录。

当Loc:

0时,只需指定每个单元中心处的一个应力记录,当如=1时,每个单元的应力记录的数目等于单元积分点的数目。

Ansys要求每个应力记录中有6个应力张量分量,当Loc:

3时,初应力文件中的第一个单元的应力记录将被用于指定所有单元的相同的初应力。

如果对一个单元定义了单元坐标系(Esys),则初应力必须在这个坐标系中指定。

如何实现铰接

Ansys可采用两种方法来实现铰接:

1.在同一位置用2个Node,然后CP。

2.只用一个Node,然后根据需要用一些可以释放某些自由度的单元,

如Beam44(Beanl44可以定义成PIN-PIN,PIN-FIX.....)

 et,22,beam44,,,,,,1

keyopt,X,7,11 !

beamelementpin-fix(1端铰结J端固结)

et,23,beam44,,,,,,1

keyopt,23,8,11!

beamelementfix-pin(J端铰结,I端固结)

keyopt,24,7,11!

beamelementpin-pin(1端铰结,J端固结)

下面举例说明铰接的应用。

如上图所示为一中间铰接的结构,两端固结,均布荷载,作出弯矩图。

命令流如下:

/prep7!

进入前处理

et,1,beam44   !

定义混凝土单元类型

et,2,beam44   !

定义钢筋单元类型

et,3,beam44   !

定义混凝土弹性模量

keyopt,1,8,11  !

第一种单元的J节点X、Y方向转动放松

keyopt,2,7,11  !

第一种单元的I节点X、Y方向转动放松

mp,dens,1,2600 !

单元一的质量密度

mp,ex,1,3e7   !

单元一的弹性模量

r,1,3,4,5,1,1,0!

单元一的实常数

k,1,        !

定义关键点

k,2,10

k,3,10,8

k,4,5,5

1,1,2       !

通过关键点连接成直线

1,2,3,

ldiv,1,,,10,   !

将直线1等分为10份

ldiv,2,,,8,    !

将直线2等分为10份

lsel,s,,,11    !

选择直线11

LATF,1,1,1,,4  !

赋予直线相关的特性

lsel,s,,,2     !

选择直线2

LATF,1,1,2,,4  !

lsel,s,,,3,10,1  !

选择直线3到10

lsel,a,,,1     !

添加直线1

lsd,a,,,12,18,1  !

添加直线12到18

LATY,1,1,3,,4  !

allsel          !

全选

lmesh,dl        !

划分所有直线

d,1,dl        !

约束节点

d,104,dl

esel,s,,,10,30,1  !

选择单元10到30

sfbeam,all,1,pres,le2 !

施加均布荷载

allsel

esel,s,,,35,50,1   !

选择单元35到50

sfbeam,all,1,pres,2e2 !

/solu            !

solve            !

/POSTl          !

进入后处理

etable,m,smisc,5    !

建立弯矩单元表

plls,m,m        !

绘制弯矩图,如下图4所示

AUTOCAD模型输入

可以充分利用AutoCAD强大的绘图功能,在AutoCAD中建立模型后,再输入Ansys中进行计算。

AutoCAD建立的模型可以通过以下两种方法传人Ansys。

1.对于三维实体(3dobject)

AutoCAD:

File->

Export...―>

保存类型选ACIS(x.sat)->

输入文件名-?

选实体(选3dobject)

Ansys:

File―>

Import->

Sat...输入即可

优点:

用Sat文件转换方便,而且一般不会有转换问题.

缺点:

只能转换三维实体或面域

2.用Iges格式文件交换

AutoCADl2自带输出Iges格式文件工具,其他可通过Algor软件将Dxf格式的模型转换为Iges的格式文件然后再转入Ansys:

Import-->

iges…输入即可

各种实体类型都能转换

查询函数的使用

在Ansys操作过程或条件语句中,常常需要知道有关模型的许多参数值,如选择集中的单元数、节点数、最大节点号等。

此时,一般可通过‘Get命令来获得这

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > PPT模板 > 卡通动漫

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1