中考数学必刷二次函数高频考点突破与提升策略必考七大知识点例题+练习无解析文档格式.docx
《中考数学必刷二次函数高频考点突破与提升策略必考七大知识点例题+练习无解析文档格式.docx》由会员分享,可在线阅读,更多相关《中考数学必刷二次函数高频考点突破与提升策略必考七大知识点例题+练习无解析文档格式.docx(14页珍藏版)》请在冰豆网上搜索。
∵当x≥2时,y随x的增大而增大,
∴a>0,
∵﹣2≤x≤1时,y的最大值为9,
∴x=1时,y=a+2a+3a2+3=9,
∴3a2+3a﹣6=0,
∴a=1,或a=﹣2(不合题意舍去).
故选:
D.
二.函数与坐标
例1.(2018•岳阳)抛物线y=3(x﹣2)2+5的顶点坐标是( )
A.(﹣2,5)B.(﹣2,﹣5)C.(2,5)D.(2,﹣5)
【分析】根据二次函数的性质y=a(x+h)2+k的顶点坐标是(﹣h,k)即可求解.
抛物线y=3(x﹣2)2+5的顶点坐标为(2,5)。
练习反馈:
1.(2018•临安区)抛物线y=3(x﹣1)2+1的顶点坐标是( )
A.(1,1)B.(﹣1,1)C.(﹣1,﹣1)D.(1,﹣1)
2.(2018•陕西)对于抛物线y=ax2+(2a﹣1)x+a﹣3,当x=1时,y>0,则这条抛物线的顶点一定在( )
A.第一象限B.第二象限C.第三象限D.第四象限
三.函数与平移
例1.(2018•广西)将抛物线y=
x2﹣6x+21向左平移2个单位后,得到新抛物线的解析式为( )
A.y=
(x﹣8)2+5B.y=
(x﹣4)2+5C.y=
(x﹣8)2+3D.y=
(x﹣4)2+3
【分析】直接利用配方法将原式变形,进而利用平移规律得出答案.
y=
x2﹣6x+21
=
(x2﹣12x)+21
[(x﹣6)2﹣36]+21
(x﹣6)2+3,
故y=
(x﹣6)2+3,向左平移2个单位后,
得到新抛物线的解析式为:
(x﹣4)2+3.
1.(2018•哈尔滨)将抛物线y=﹣5x2+1向左平移1个单位长度,再向下平移2个单位长度,所得到的抛物线为( )
A.y=﹣5(x+1)2﹣1B.y=﹣5(x﹣1)2﹣1
C.y=﹣5(x+1)2+3D.y=﹣5(x﹣1)2+3
2.(2018•哈尔滨)将抛物线y=﹣5x2+1向左平移1个单位长度,再向下平移2个单位长度,所得到的抛物线为( )
四.函数图像与a、b、c的关系
例1.(2018•遂宁)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则以下结论同时成立的是( )
A.
B.
C.
D.
【分析】利用抛物线开口方向得到a>0,利用抛物线的对称轴在直线x=1的右侧得到b<0,b<﹣2a,即b+2a<0,利用抛物线与y轴交点在x轴下方得到c<0,也可判断abc>0,利用抛物线与x轴有2个交点可判断b2﹣4ac>0,利用x=1可判断a+b+c<0,利用上述结论可对各选项进行判断.
∵抛物线开口向上,
∵抛物线的对称轴在直线x=1的右侧,
∴x=﹣
>1,
∴b<0,b<﹣2a,即b+2a<0,
∵抛物线与y轴交点在x轴下方,
∴c<0,
∴abc>0,
∵抛物线与x轴有2个交点,
∴△=b2﹣4ac>0,
∵x=1时,y<0,
∴a+b+c<0.
例2.(2018•滨州)如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(﹣1,0),则
①二次函数的最大值为a+b+c;
②a﹣b+c<0;
③b2﹣4ac<0;
④当y>0时,﹣1<x<3,其中正确的个数是( )
A.1B.2C.3D.4
【分析】直接利用二次函数的开口方向以及图象与x轴的交点,进而分别分析得出答案.
①∵二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,且开口向下,
∴x=1时,y=a+b+c,即二次函数的最大值为a+b+c,故①正确;
②当x=﹣1时,a﹣b+c=0,故②错误;
③图象与x轴有2个交点,故b2﹣4ac>0,故③错误;
④∵图象的对称轴为x=1,与x轴交于点A、点B(﹣1,0),
∴A(3,0),
故当y>0时,﹣1<x<3,故④正确.
B.
1.(2018•白银)如图是二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的一部分,与x轴的交点A在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:
①ab<0;
②2a+b=0;
③3a+c>0;
④a+b≥m(am+b)(m为实数);
⑤当﹣1<x<3时,y>0,其中正确的是( )
A.①②④B.①②⑤C.②③④D.③④⑤
2.(2018•白银)如图是二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的一部分,与x轴的交点A在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:
五.二次函数的最值
例1.(2018•潍坊)已知二次函数y=﹣(x﹣h)2(h为常数),当自变量x的值满足2≤x≤5时,与其对应的函数值y的最大值为﹣1,则h的值为( )
A.3或6B.1或6C.1或3D.4或6
【分析】分h<2、2≤h≤5和h>5三种情况考虑:
当h<2时,根据二次函数的性质可得出关于h的一元二次方程,解之即可得出结论;
当2≤h≤5时,由此时函数的最大值为0与题意不符,可得出该情况不存在;
当h>5时,根据二次函数的性质可得出关于h的一元二次方程,解之即可得出结论.综上即可得出结论.
当h<2时,有﹣(2﹣h)2=﹣1,
解得:
h1=1,h2=3(舍去);
当2≤h≤5时,y=﹣(x﹣h)2的最大值为0,不符合题意;
当h>5时,有﹣(5﹣h)2=﹣1,
h3=4(舍去),h4=6.
综上所述:
h的值为1或6.
1.(2018•黄冈)当a≤x≤a+1时,函数y=x2﹣2x+1的最小值为1,则a的值为( )
A.﹣1B.2C.0或2D.﹣1或2
六.二次函数与实际应用
例1.(2018•淮安)某景区商店销售一种纪念品,每件的进货价为40元.经市场调研,当该纪念品每件的销售价为50元时,每天可销售200件;
当每件的销售价每增加1元,每天的销售数量将减少10件.
(1)当每件的销售价为52元时,该纪念品每天的销售数量为 180 件;
(2)当每件的销售价x为多少时,销售该纪念品每天获得的利润y最大?
并求出最大利润.
【分析】
(1)根据“当每件的销售价每增加1元,每天的销售数量将减少10件”,即可解答;
(2)根据等量关系“利润=(售价﹣进价)×
销量”列出函数关系式,根据二次函数的性质,即可解答.
(1)由题意得:
200﹣10×
(52﹣50)=200﹣20=180(件),
故答案为:
180;
(2)由题意得:
y=(x﹣40)[200﹣10(x﹣50)]
=﹣10x2+1100x﹣28000
=﹣10(x﹣55)2+2250
∴每件销售价为55元时,获得最大利润;
最大利润为2250元.
例2.(2018•天门)绿色生态农场生产并销售某种有机产品,假设生产出的产品能全部售出.如图,线段EF、折线ABCD分别表示该有机产品每千克的销售价y1(元)、生产成本y2(元)与产量x(kg)之间的函数关系.
(1)求该产品销售价y1(元)与产量x(kg)之间的函数关系式;
(2)直接写出生产成本y2(元)与产量x(kg)之间的函数关系式;
(3)当产量为多少时,这种产品获得的利润最大?
最大利润为多少?
(1)根据线段EF经过的两点的坐标利用待定系数法确定一次函数的表达式即可;
(2)显然,当0≤x≤50时,y2=70;
当130≤x≤180时,y2=54;
当50<x<130时,设y2与x之间的函数关系式为y2=mx+n,利用待定系数法确定一次函数的表达式即可;
(3)利用:
总利润=每千克利润×
产量,根据x的取值范围列出有关x的二次函数,求得最值比较可得.
(1)设y1与x之间的函数关系式为y1=kx+b,
∵经过点(0,168)与(180,60),
∴
,解得:
,
∴产品销售价y1(元)与产量x(kg)之间的函数关系式为y1=﹣
x+168(0≤x≤180);
(2)由题意,可得当0≤x≤50时,y2=70;
当50<x<130时,设y2与x之间的函数关系式为y2=mx+n,
∵直线y2=mx+n经过点(50,70)与(130,54),
,解得
∴当50<x<130时,y2=﹣
x+80.
综上所述,生产成本y2(元)与产量x(kg)之间的函数关系式为y2=
;
(3)设产量为xkg时,获得的利润为W元,
①当0≤x≤50时,W=x(﹣
x+168﹣70)=﹣
(x﹣
)2+
∴当x=50时,W的值最大,最大值为3400;
②当50<x<130时,W=x[(﹣
x+168)﹣(﹣
x+80)]=﹣
(x﹣110)2+4840,
∴当x=110时,W的值最大,最大值为4840;
③当130≤x≤180时,W=x(﹣
x+168﹣54)=﹣
(x﹣95)2+5415,
∴当x=130时,W的值最大,最大值为4680.
因此当该产品产量为110kg时,获得的利润最大,最大值为4840元.
1.(2018•扬州)“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售y(件)与销售单价x(元)之间存在一次函数关系,如图所示.
(1)求y与x之间的函数关系式;
(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?
(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.
七.二次函数综合
例1.(2018•随州)如图所示,已知二次函数y=ax2+bx+c的图象与x轴交于A、B两点,与y轴交于点C对称轴为直线x=1.直线y=﹣x+c与抛物线y=ax2+bx+c交于C、D两点,D点在x轴下方且横坐标小于3,则下列结论:
①2a+b+c>0;
③x(ax+b)≤a+b;
④a<﹣1.
其中正确的有( )
A.4个B.3个C.2个D.1个
【分析】利用抛物线与y轴的交点位置得到c>0,利用对称轴方程得到b=﹣2a,则2a+b+c=c>0,于是可对①进行判断;
利用抛物线的对称性得到抛物线与x轴的另一个交点在点(﹣1,0)右侧,则当x=﹣1时,y<0,于是可对②进行判断;
根据二次函数的性质得到x=1时,二次函数有最大值,则ax2+bx+c≤a+b+c,于是可对③进行判断;
由于直线y=﹣x+c与抛物线y=ax2+bx+c交于C、D两点,D点在x轴下方且横坐标小于3,利用函数图象得x=3时,一次函数值比二次函数值大,即9a+3b+c<﹣3+c,然后把b=﹣2a代入解a的不等式,则可对④进行判断.
∵抛物线与y轴的交点在x轴上方,
∴c>0,
∵抛物线的对称轴为直线x=﹣
=1,
∴b=﹣2a,
∴2a+b+c=2a﹣2a+c=c>0,所以①正确;
∵抛物线与x轴的一个交点在点(3,0)左侧,
而抛物线的对称轴为直线x=1,
∴抛物线与x轴的另一个交点在点(﹣1,0)右侧,
∴当x=﹣1时,y<0,
∴a﹣b+c<0,所以②正确;
∵x=1时,二次函数有最大值,
∴ax2+bx+c≤a+b+c,
∴ax2+bx≤a+b,所以③正确;
∵直线y=﹣x+c与抛物线y=ax2+bx+c交于C、D两点,D点在x轴下方且横坐标小于3,
∴x=3时,一次函数值比二次函数值大,
即9a+3b+c<﹣3+c,
而b=﹣2a,
∴9a﹣6a<﹣3,解得a<﹣1,所以④正确.
练习反馈
1.(2018•黄冈)已知直线l:
y=kx+1与抛物线y=x2﹣4x.
(1)求证:
直线l与该抛物线总有两个交点;
(2)设直线l与该抛物线两交点为A,B,O为原点,当k=﹣2时,求△OAB的面积.
(1)联立两解析式,根据判别式即可求证;
(2)画出图象,求出A、B的坐标,再求出直线y=﹣2x+1与x轴的交点C,然后利用三角形的面积公式即可求出答案.
(1)联立
化简可得:
x2﹣(4+k)x﹣1=0,
∴△=(4+k)2+4>0,
故直线l与该抛物线总有两个交点;
(2)当k=﹣2时,
∴y=﹣2x+1
过点A作AF⊥x轴于F,过点B作BE⊥x轴于E,
∴联立
∴A(1﹣
,2
﹣1),B(1+
,﹣1﹣2
)
∴AF=2
﹣1,BE=1+2
易求得:
直线y=﹣2x+1与x轴的交点C为(
,0)
∴OC=
∴S△AOB=S△AOC+S△BOC
OC•AF+
OC•BE
OC(AF+BE)
×
(2
﹣1+1+2
1.(2018•黑龙江)如图,抛物线y=x2+bx+c与y轴交于点A(0,2),对称轴为直线x=﹣2,平行于x轴的直线与抛物线交于B、C两点,点B在对称轴左侧,BC=6.
(1)求此抛物线的解析式.
(2)点P在x轴上,直线CP将△ABC面积分成2:
3两部分,请直接写出P点坐标.