ImageVerifierCode 换一换
格式:DOCX , 页数:14 ,大小:91.46KB ,
资源ID:16624074      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/16624074.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(中考数学必刷二次函数高频考点突破与提升策略必考七大知识点例题+练习无解析文档格式.docx)为本站会员(b****3)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

中考数学必刷二次函数高频考点突破与提升策略必考七大知识点例题+练习无解析文档格式.docx

1、当x2时,y随x的增大而增大,a0,2x1时,y的最大值为9,x=1时,y=a+2a+3a2+3=9,3a2+3a6=0,a=1,或a=2(不合题意舍去)故选:D二 函数与坐标例1. (2018岳阳)抛物线y=3(x2)2+5的顶点坐标是()A(2,5) B(2,5) C(2,5) D(2,5)【分析】根据二次函数的性质y=a(x+h)2+k的顶点坐标是(h,k)即可求解抛物线y=3(x2)2+5的顶点坐标为(2,5)。练习反馈:1. (2018临安区)抛物线y=3(x1)2+1的顶点坐标是()A(1,1) B(1,1) C(1,1) D(1,1)2. (2018陕西)对于抛物线y=ax2+(

2、2a1)x+a3,当x=1时,y0,则这条抛物线的顶点一定在()A第一象限 B第二象限 C第三象限 D第四象限三 函数与平移例1. (2018广西)将抛物线y=x26x+21向左平移2个单位后,得到新抛物线的解析式为()Ay=(x8)2+5 By=(x4)2+5 Cy=(x8)2+3 Dy=(x4)2+3【分析】直接利用配方法将原式变形,进而利用平移规律得出答案y=x26x+21=(x212x)+21 (x6)236+21(x6)2+3,故y=(x6)2+3,向左平移2个单位后,得到新抛物线的解析式为:(x4)2+31. (2018哈尔滨)将抛物线y=5x2+1向左平移1个单位长度,再向下平移

3、2个单位长度,所得到的抛物线为()Ay=5(x+1)21 By=5(x1)21 Cy=5(x+1)2+3 Dy=5(x1)2+32. (2018哈尔滨)将抛物线y=5x2+1向左平移1个单位长度,再向下平移2个单位长度,所得到的抛物线为()四 函数图像与a、b、c的关系例1. (2018遂宁)已知二次函数y=ax2+bx+c(a0)的图象如图所示,则以下结论同时成立的是()A BC D【分析】利用抛物线开口方向得到a0,利用抛物线的对称轴在直线x=1的右侧得到b0,b2a,即b+2a0,利用抛物线与y轴交点在x轴下方得到c0,也可判断abc0,利用抛物线与x轴有2个交点可判断b24ac0,利用

4、x=1可判断a+b+c0,利用上述结论可对各选项进行判断抛物线开口向上,抛物线的对称轴在直线x=1的右侧,x=1,b0,b2a,即b+2a0,抛物线与y轴交点在x轴下方,c0,abc0,抛物线与x轴有2个交点,=b24ac0,x=1时,y0,a+b+c0例2. (2018滨州)如图,若二次函数y=ax2+bx+c(a0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(1,0),则二次函数的最大值为a+b+c;ab+c0;b24ac0;当y0时,1x3,其中正确的个数是()A1 B2 C3 D4【分析】直接利用二次函数的开口方向以及图象与x轴的交点,进而分别分析得出答案二次函数y=a

5、x2+bx+c(a0)图象的对称轴为x=1,且开口向下,x=1时,y=a+b+c,即二次函数的最大值为a+b+c,故正确;当x=1时,ab+c=0,故错误;图象与x轴有2个交点,故b24ac0,故错误;图象的对称轴为x=1,与x轴交于点A、点B(1,0),A(3,0),故当y0时,1x3,故正确B1. (2018白银)如图是二次函数y=ax2+bx+c(a,b,c是常数,a0)图象的一部分,与x轴的交点A在点(2,0)和(3,0)之间,对称轴是x=1对于下列说法:ab0;2a+b=0;3a+c0;a+bm(am+b)(m为实数);当1x3时,y0,其中正确的是()A B C D2. (2018

6、白银)如图是二次函数y=ax2+bx+c(a,b,c是常数,a0)图象的一部分,与x轴的交点A在点(2,0)和(3,0)之间,对称轴是x=1对于下列说法:五二次函数的最值例1. (2018潍坊)已知二次函数y=(xh)2(h为常数),当自变量x的值满足2x5时,与其对应的函数值y的最大值为1,则h的值为()A3或6 B1或6 C1或3 D4或6【分析】分h2、2h5和h5三种情况考虑:当h2时,根据二次函数的性质可得出关于h的一元二次方程,解之即可得出结论;当2h5时,由此时函数的最大值为0与题意不符,可得出该情况不存在;当h5时,根据二次函数的性质可得出关于h的一元二次方程,解之即可得出结论

7、综上即可得出结论当h2时,有(2h)2=1,解得:h1=1,h2=3(舍去);当2h5时,y=(xh)2的最大值为0,不符合题意;当h5时,有(5h)2=1,h3=4(舍去),h4=6综上所述:h的值为1或61. (2018黄冈)当axa+1时,函数y=x22x+1的最小值为1,则a的值为()A1 B2 C0或2 D1或2六.二次函数与实际应用例1. (2018淮安)某景区商店销售一种纪念品,每件的进货价为40元经市场调研,当该纪念品每件的销售价为50元时,每天可销售200件;当每件的销售价每增加1元,每天的销售数量将减少10件(1)当每件的销售价为52元时,该纪念品每天的销售数量为180件;

8、(2)当每件的销售价x为多少时,销售该纪念品每天获得的利润y最大?并求出最大利润【分析】(1)根据“当每件的销售价每增加1元,每天的销售数量将减少10件”,即可解答;(2)根据等量关系“利润=(售价进价)销量”列出函数关系式,根据二次函数的性质,即可解答(1)由题意得:20010(5250)=20020=180(件),故答案为:180;(2)由题意得:y=(x40)20010(x50)=10x2+1100x28000=10(x55)2+2250每件销售价为55元时,获得最大利润;最大利润为2250元例2(2018天门)绿色生态农场生产并销售某种有机产品,假设生产出的产品能全部售出如图,线段EF

9、、折线ABCD分别表示该有机产品每千克的销售价y1(元)、生产成本y2(元)与产量x(kg)之间的函数关系(1)求该产品销售价y1(元)与产量x(kg)之间的函数关系式;(2)直接写出生产成本y2(元)与产量x(kg)之间的函数关系式;(3)当产量为多少时,这种产品获得的利润最大?最大利润为多少?(1)根据线段EF经过的两点的坐标利用待定系数法确定一次函数的表达式即可;(2)显然,当0x50时,y2=70;当130x180时,y2=54;当50x130时,设y2与x之间的函数关系式为y2=mx+n,利用待定系数法确定一次函数的表达式即可;(3)利用:总利润=每千克利润产量,根据x的取值范围列出

10、有关x的二次函数,求得最值比较可得(1)设y1与x之间的函数关系式为y1=kx+b,经过点(0,168)与(180,60),解得:,产品销售价y1(元)与产量x(kg)之间的函数关系式为y1=x+168(0x180);(2)由题意,可得当0x50时,y2=70;当50x130时,设y2与x之间的函数关系式为y2=mx+n,直线y2=mx+n经过点(50,70)与(130,54),解得当50x130时,y2=x+80综上所述,生产成本y2(元)与产量x(kg)之间的函数关系式为y2=;(3)设产量为xkg时,获得的利润为W元,当0x50时,W=x(x+16870)=(x)2+当x=50时,W的值

11、最大,最大值为3400;当50x130时,W=x(x+168)(x+80)=(x110)2+4840,当x=110时,W的值最大,最大值为4840;当130x180时,W=x(x+16854)=(x95)2+5415,当x=130时,W的值最大,最大值为4680因此当该产品产量为110kg时,获得的利润最大,最大值为4840元1. (2018扬州)“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售y(件)与销售单价x(元)之间存在一次函数关系,如图所示(1)求y与x之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取

12、的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围七二次函数综合例1. (2018随州)如图所示,已知二次函数y=ax2+bx+c的图象与x轴交于A、B两点,与y轴交于点C对称轴为直线x=1直线y=x+c与抛物线y=ax2+bx+c交于C、D两点,D点在x轴下方且横坐标小于3,则下列结论:2a+b+c0;x(ax+b)a+b;a1其中正确的有()A4个 B3个 C2个 D1个【分析】利用抛物线与y轴的交点位置得到c0,利用对称轴方程得到b=2a,则2a+b+c=c0,

13、于是可对进行判断;利用抛物线的对称性得到抛物线与x轴的另一个交点在点(1,0)右侧,则当x=1时,y0,于是可对进行判断;根据二次函数的性质得到x=1时,二次函数有最大值,则ax2+bx+ca+b+c,于是可对进行判断;由于直线y=x+c与抛物线y=ax2+bx+c交于C、D两点,D点在x轴下方且横坐标小于3,利用函数图象得x=3时,一次函数值比二次函数值大,即9a+3b+c3+c,然后把b=2a代入解a的不等式,则可对进行判断抛物线与y轴的交点在x轴上方,c0,抛物线的对称轴为直线x=1,b=2a,2a+b+c=2a2a+c=c0,所以正确;抛物线与x轴的一个交点在点(3,0)左侧,而抛物线

14、的对称轴为直线x=1,抛物线与x轴的另一个交点在点(1,0)右侧,当x=1时,y0,ab+c0,所以正确;x=1时,二次函数有最大值,ax2+bx+ca+b+c,ax2+bxa+b,所以正确;直线y=x+c与抛物线y=ax2+bx+c交于C、D两点,D点在x轴下方且横坐标小于3,x=3时,一次函数值比二次函数值大,即9a+3b+c3+c,而b=2a,9a6a3,解得a1,所以正确练习反馈1. (2018黄冈)已知直线l:y=kx+1与抛物线y=x24x(1)求证:直线l与该抛物线总有两个交点;(2)设直线l与该抛物线两交点为A,B,O为原点,当k=2时,求OAB的面积(1)联立两解析式,根据判

15、别式即可求证;(2)画出图象,求出A、B的坐标,再求出直线y=2x+1与x轴的交点C,然后利用三角形的面积公式即可求出答案(1)联立化简可得:x2(4+k)x1=0,=(4+k)2+40,故直线l与该抛物线总有两个交点;(2)当k=2时,y=2x+1过点A作AFx轴于F,过点B作BEx轴于E,联立A(1,21),B(1+,12)AF=21,BE=1+2易求得:直线y=2x+1与x轴的交点C为(,0)OC=SAOB=SAOC+SBOCOCAF+OCBEOC(AF+BE)(21+1+21. (2018黑龙江)如图,抛物线y=x2+bx+c与y轴交于点A(0,2),对称轴为直线x=2,平行于x轴的直线与抛物线交于B、C两点,点B在对称轴左侧,BC=6(1)求此抛物线的解析式(2)点P在x轴上,直线CP将ABC面积分成2:3两部分,请直接写出P点坐标

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1