1 改性聚四氟乙烯膜在油田含油污水处理中的动电现象 蔺爱国 石油学报Word文档下载推荐.docx

上传人:b****4 文档编号:16488388 上传时间:2022-11-24 格式:DOCX 页数:22 大小:44.02KB
下载 相关 举报
1 改性聚四氟乙烯膜在油田含油污水处理中的动电现象 蔺爱国 石油学报Word文档下载推荐.docx_第1页
第1页 / 共22页
1 改性聚四氟乙烯膜在油田含油污水处理中的动电现象 蔺爱国 石油学报Word文档下载推荐.docx_第2页
第2页 / 共22页
1 改性聚四氟乙烯膜在油田含油污水处理中的动电现象 蔺爱国 石油学报Word文档下载推荐.docx_第3页
第3页 / 共22页
1 改性聚四氟乙烯膜在油田含油污水处理中的动电现象 蔺爱国 石油学报Word文档下载推荐.docx_第4页
第4页 / 共22页
1 改性聚四氟乙烯膜在油田含油污水处理中的动电现象 蔺爱国 石油学报Word文档下载推荐.docx_第5页
第5页 / 共22页
点击查看更多>>
下载资源
资源描述

1 改性聚四氟乙烯膜在油田含油污水处理中的动电现象 蔺爱国 石油学报Word文档下载推荐.docx

《1 改性聚四氟乙烯膜在油田含油污水处理中的动电现象 蔺爱国 石油学报Word文档下载推荐.docx》由会员分享,可在线阅读,更多相关《1 改性聚四氟乙烯膜在油田含油污水处理中的动电现象 蔺爱国 石油学报Word文档下载推荐.docx(22页珍藏版)》请在冰豆网上搜索。

1 改性聚四氟乙烯膜在油田含油污水处理中的动电现象 蔺爱国 石油学报Word文档下载推荐.docx

技术;

污水处理方法

含油污水的产量大,涉及的范围广,例如石油开采、石油炼制、石油化工、油品贮运、油轮事故、轮船航运、车辆清洗、机械制造、食品加工等过程中均会产生含油污水。

油污染作为一种常见的污染,对环境保护和生态平衡危害极大。

当今油水分离技术较多,常用的方法有重力分离法、空气浮选法、粗粒化法、过滤法、吸附法、超声波法等技术,并且新的除油技术还在不断的研发中。

本文从除油器的原理及方法方面加以介绍。

1重力分离法

重力分离法是典型的初级处理方法,是利用油和水的密度差及油和水的不相溶性,在静止或流动状态下实现油珠、悬浮物与水分离。

分散在水中的油珠在浮力作用下缓慢上浮、分层,油珠上浮速度取决于油珠颗粒的大小,油与水的密度差,流动状态及流体的粘度。

它们之间的关系可用stokes和Newton等定律来描述。

1.1横向流除油器[1]

横向流含油污水除油设备是在斜板除油器的基础上发展起来的,它由含油污水的聚结区和分离区两部分组成。

含油污水首先经过交叉板型的聚结器,使小分散油珠聚并成大油珠,小颗粒固体物质絮凝成大颗粒,然后聚结长大的油珠和固体物质通过具有独特通道的横向流分离板区,而从水中分离出来。

在进行油水、固体物质分离的同时,还可以进行气体(天然气)的分离。

1.2波纹板聚结油水分离器[2]

波纹板除油原理主要是利用油、水的密度差,使油珠浮集在板的波峰处而分离去除,其关键是在于借助哈真浅池沉淀原理,制成波纹板变间距变水流流线,过水断面是变化的,水流呈扩散、收缩状态交替流动,产生了脉动(正弦)水流,使油珠之间增加了碰撞机率,促使小油珠变大,加快油珠的上浮速度,达到油水分离的目的。

1.3聚集型油水分离器[3]

奥地利费雷公司在世界上率先开发了CPS一体化波纹板式重力加速聚集型油水分离器。

该波形板是费雷公司的专利产品,以聚丙烯为基础材料,内含多种添加剂,使其具有亲油而不粘油、抗老化是特点。

波纹板一块一块地叠加起来的,间距一般为6mm(当水中悬浮物含量较高时,可采用间距12mm的设计)。

1.4高效仰角式游离水分离器[4]

将卧式和立式游离水分离器相结合,采用仰角设计,克服了立式容器内油水界面覆盖面积小和卧式容器油水界面与水出口距离短,分离时间不充分的缺点。

来液进口位于管式容器的上行端,水中油珠能聚结并爬高上行至顶端油出口,而水下沉至底端水出口排出。

该设备仰角小于12°

长18.3m,直径为1372mm和914mm两种规格。

2过滤法过滤法是将废水通过设有孔眼的装置或通过由某种颗粒介质组成的滤层,利用其截留、筛分、惯性碰撞等作用使废水中的悬浮物和油分等有害物质得以去除。

常用的过滤方法有3种:

分层过滤、隔膜过滤和纤维介质过滤。

膜过滤法又称为膜分离法[5],是利用微孔膜将油珠和表面活性剂截留,主要用于除去乳化油和某些溶解油。

滤膜包括超滤膜、反渗透膜和混合滤膜等。

膜材料包括有机膜和无机膜两种,常见的有机膜有醋酸纤维膜、聚砜膜、聚丙烯膜等,常用的无机膜有陶瓷膜、氧化铝、氧化钴、氧化钛等。

乳化油处于稳定状态,用物理方法或者化学方法很难将其分离。

随着膜科学的飞速发展,膜过程处理乳化油污水已逐步被人们接受并在工业中应用。

3离心分离法

离心分离法是使装有含油废水的容器高速旋转,形成离心力场,因固体颗粒、油珠与废水的密度不同,受到的离心力也不同,达到从废水中去除固体颗粒、油珠的方法。

常用的设备是水力旋流分离器。

旋流分离器在液固分离方面的应用始于19世纪40年代,现在较为成熟,但在油/水分离

领域的研究要晚得多。

虽然液固分离与液液分离的基本原理相同,但二者设备的几何结构却差别较大。

脱油型旋流分离器起源于英国。

从20世

纪60年代末开始,由英国南安普顿大学MartinThew教授领导的多相流与机械分离研究室开始水中除油旋流分离器的研究,发明了双锥双入口

型液-液旋流分离器。

在试验过程中取得满意效果。

随后,YoungGAB等人设计出的与双锥型旋流器具有相同分离性能但处理量要高出1倍的单

锥型旋流分离器。

经过几何优化设计,Conoco公司提出了K型旋流分离器,对于直径小于10μm的油滴分离性能提高更加明显。

由于旋流分离器

具有许多独特的优点,旋流脱油技术在发达国家含油废水处理特别是在海上石油开采平台上已成为不可替代的标准设备。

4浮选法

浮选法,又称气浮法,是国内外正在深入研究与不断推广的一种水处理技术。

该法是在水中通入空气或其他气体产生微细气泡,使水中的一些细小悬浮油珠及固体颗粒附着在气泡上,随气泡一起上浮到水面形成浮渣(含油泡沫层),然后使用适当的撇油器将油撇去。

该法主要用于处理隔油池处理后残留于水中粒经为10~60μm的分散油、乳化油及细小的悬浮固体物,出水的含油质量浓度可降至20~30mg/L。

根据产生气泡的方式不同,气浮法又分为加压气浮、鼓气气浮、电解气浮等,其中应用最多的是加压溶气气浮法。

5生物氧化法

生物氧化法是利用微生物的生物化学作用使废水得到净化的一种方法。

油类是一种烃类有机物,可以利用微生物的新陈代谢等生命活动将其分解为二氧化碳和水。

含油废水中的有机物多以溶解态和乳化态,BOD5较高,利于生物的氧化作用。

对于含油质量浓度在30~50mg/L以下、同时还含有其他可生物降解的有害物质的废水,常用生化法处理,主要用于去除废水中的溶解油。

含油废水常见的生化处理法有活性污泥法、生物过滤法、生物转盘法等。

活性污泥法处理效果好,主要用于处理要求高而水质稳定的废水。

生物膜法与活性污泥法相比,生物膜附着于填料载体表面,使繁殖速度慢的微生物也能存在,从而构成了稳定的生态系统。

但是,由于附着在载体表面的微生物量较难控制,因而在运转操作上灵活性差,而且容积负荷有限。

6化学法

化学法又称药剂法,是投加药剂由化学作用将废水中的污染物成分转化为无害物质,使废水得到净化的一种方法。

常用的化学方法有中和、沉淀、混凝、氧化还原等。

对含油废水主要用混凝法。

混凝法是向含油废水中加入一定比例的絮凝剂,在水中水解后形成带正电荷的胶团与带负电荷的乳化油产生电中和,油粒聚集,粒径变大,同时生成絮状物吸附细小油滴,然后通过沉降或气浮的方法实现油水分离。

常见的絮凝剂有聚合氯化铝(PAC)、三氯化铁、硫酸铝、硫酸亚铁等无机絮凝剂和丙烯酰胺、聚丙烯酰胺(PAM)等有机高分子絮凝剂,不同的絮凝剂的投加量和pH值适用范围不同。

此法适合于靠重力沉降不能分离的乳化状态的油滴和其他细小悬浮物。

7吸附法

吸附法是利用亲油性材料,吸附废水中的溶解油及其他溶解性有机物。

最常用的吸油材料是活性炭,可吸附废水中的分散油、乳化油和溶解油。

由于活性炭的吸附容量有限(对油一般为30~80mg/g),成本高,再生困,一般只用作含油废水多级处理的最后一级处理,出水含油质量浓度可降至0.1~0.2mg/L。

1976年湖南长岭炼油厂在废水处理中就采用了活性碳吸附进行深度处理。

国内外对于新型吸附剂的研制也取得了一些有益的成果。

研究发现,片状石墨能吸附由海上油轮漏油事件释放的重油并易于与水分离。

吸附树脂是近年来发展起来的一种新型有机吸附材料,吸附性能好,再生容易,有逐步取代活性炭的趋势,有越来越多的业内人士研究高效吸油树脂的合成与应用[6]。

有研究表明,采用丙纶吸油材料从油工业废水中吸附分离和回收油类物质,可根据废水的初始状况、最终要求、水流流量等因素,选用合适的净化方法。

此外,煤灰、改性膨润土、磺化煤、碎焦碳、有机纤维、吸油毡、陶粒、石英砂、木屑、稻草等也可用作吸油材料。

吸油材料吸油饱和后,根据具体情况,再生重复使用或直接用作燃料。

8粗粒化法

粗粒化法是利用油、水两相对聚结材料亲和力相差悬殊的特性,油粒被材料捕获而滞留于材料表面和孔隙内形成油膜,油膜增大到一定厚度时时,在水力和浮力等作用下油膜脱落合并聚结成较大的油粒。

由斯托克斯公式可知,油粒在水中的浮升速度与油粒直径的平方成正比。

聚结后粒经较大的油珠则易于从水中被分离。

经过粗粒化的废水,其含油量及污油性质并无变化,只是更容易用重力分离法将油除去。

8.1新型高效除油器[7]

旋流除油、粗粒化除油及斜板除油技术,是当今普遍认为高效的除油技术。

高效除油器是将上述多种高效除油技术于一体的高效合一除油器,

其总体结构设计成卧式,由旋流(涡流段)粗粒化段及斜板除油段组成。

它不仅可提高除油效率,且方便操作、减少占地。

根据江汉油田采出水特

性,采用两段粗粒化及两段斜板除油,在进口ρ(油)≤1000mg/L时,出口达到后续处理设备(过滤器)的进口要求ρ(油)≤30mg/L。

8.2EPS油水分离技术[8]

EPS油水分离器是一种高效、先进的油水分离装置。

它融合了当今先进的板式除油和粗粒化聚结技术,集污水的预处理、油水分离以及二次沉淀和油的回收于一体;

具有安装运行费用省、油水分离效果好,操作维护容易等特点,是立式除油罐、斜板除油装置(如美国石油协会的除油装置(API)、波纹板斜板除油装置(CPI)、平行斜板除油装置(PPI)等的更新替代产品。

EPS油水分离器目前已在韩国、美国、波兰、印度、泰国、中国等国家有了实际的应用,污水处理效果普遍良好。

9声波、微波和超声波脱水技术

声波可加速水珠聚结,提高原油脱水效率;

超声波可降低能耗和减少破乳剂用量;

而微波在降低乳状液稳定性的同时,还可加热乳状液,进一步促进水滴的聚结,在解决我国东部老油田因三采等引起的原油性质复杂的深度脱水问题方面具有很好的应用前景。

微波是指频率为300MHz~300GHz的电磁波[9]。

微波水处理技术是把微波场对单相流和多相流物化反应的强烈催化作用、穿透作用、选择性供能及其杀灭微生物的功能用于水处理的一项新型技术。

超声波是一种高频机械波,其频率一般2×

104~5×

108Hz之间,具有能量集中、穿透力强等特点。

超声波在水中可以发生凝聚效应、空穴或空化效应[10]。

当超声波通过含有污水的溶液时,造成微小油滴与水一起振动。

但由于大小不同的粒子具有不同的相对振动速度、油滴将会相互碰撞、粘合,使油滴的体积增大。

随后,由于粒子已变大、不能随声波振动了,只作无规则运动。

最后水中小油滴凝聚并上浮,油水分离效果良好。

超声处理乳化油污水时,必须以先通过实验,以确定最佳的声波频率,否则可能出现超声粉碎效应,影响处理效果。

目前,国内外学者利用超声波技术降解水中的污染物已多达几十种,但所研究的对象多为单组分模拟体系,而实际污水中常含有多种污染物,因此超声波技术在实际污水处理中的适用性如何还有待进一步的研究。

此外,目前有关利用超声波技术降解水中污染物的研究大多属于实验室阶段,且由于声化学反应过程的降解机理、反应动力学及反应器的设计放大等方面的研究开展得很不充分,目前还难以实现工程化。

10超声/电化学联用技术[9]

利用超声的空化效应,可在电化学反应中使电极不形成覆盖层,避免电极活性下降;

超声空化效应还有利于协同电催化过程产生·

OH,而使污水中的污染物的分解加速;

超声还可使有机物在水溶液中充分分散,从而大幅度提高反应器的处理能力。

Mizera等在电解氧化处理含酚废水时发现,无超声存在时,只有50%的分解率,若使用25kHz、104W/m2的超声波处理时,酚的分解率会提高到80%。

刘静等利用超声/电化学联用技术

对印染废水的处理表明,在超声波和电场的协同作用下,废水的脱色率大大高于单独使用超声波时的脱色率。

最佳答案

隔油池(oilseparator)是利用油与水的比重差异,分离去除污水中颗粒较大的悬浮油的一种处理构筑物。

石油工业和石油化学工业在生产过程中排出含大量油品的废水;

煤的焦化和气化工业排出含高浓度焦油的废水;

毛纺工业和肉品工业等排出含有较多油脂的废水。

这些含油废水如排入水体会造成污染,灌溉农田会堵塞土壤孔隙,有害作物生长。

如对废水中的油品加以回收利用,则不仅可避免对环境的污染,又能获得可观的经济收益。

废水中油品比重一般比水小,多以三种状态存在:

①悬浮状态:

油品颗粒较大,隔油池

油珠直径0.1毫米以上,漂浮水面,易于从水中分离。

在石油工业中,这类油品约占废水含油量的60~80%。

②乳化状态:

油品的分散粒径小,油珠直径在0.1毫米以下,呈乳化状态,不易从水中上浮分离。

这类油品约占废水油含量的10~15%。

③溶解状态:

石油在水中溶解度极小,溶于水的油品占废水含油量的0.2~0.5%。

隔油池主要用于分离去除废水中悬浮状态的油品,而乳化油品则要用上浮或混凝沉淀法去除。

原理:

利用隔油池与沉淀池处理废水的基本原理相同,都是利用废水中悬浮物和水的比重不同而达到分离的目的。

隔油池的构造多采用平流式,含油废水通过配水槽进入平面为矩形的隔油池,沿水平方向缓慢流动,在流动中油品上浮水面,由集油管或设置在池面的刮油机推送到集油管中流入脱水罐。

在隔油池中沉淀下来的重油及其他杂质,积聚到池底污泥斗中,通过排泥管进入污泥管中。

经过隔油处理的废水则溢流入排水渠排出池外,进行后续处理,以去除乳化油及其他污染物。

  隔油池多用钢筋混凝土筑造,也有用砖石砌筑的在矩形平面上,沿水流方向分为2~4格,每格宽度一般不超过6米,以便布水均匀。

有效水深不超过2米,隔油池的长度一般比每一格的宽度大4倍以上。

隔油池多用链带式的刮油机和刮泥机分别刮除浮油和池底污泥。

一般每格安装一组刮油机和刮泥机,设一个污泥斗。

若每格中间加设档板,挡板两侧都安装刮油机和刮泥机,并设污泥斗,则称为两段式隔油池(见图[两段式隔油池]),可以提高除油效率,但设备增多,能耗增高。

若在隔油池内加设若干斜板,也可以提高除油效率,但建设投资较高。

在寒冷地区,为防止冬季油品凝固,可在集油管底部设蒸汽管加热。

隔油池一般都要加盖,并在盖板下设蒸汽管,以便保温,防止隔油池起火和油品挥发,并可防止灰沙进入。

  隔油是自然浮上分离装置,常用的隔油池有:

平流式隔油池(API油分离器),平行板式隔油池(PPI油分离器)和倾斜板式隔油池(CPI油分离器).隔油池的出水油含量一般小于50mg/L。

气浮工艺及加压溶气气浮的原理与设计要点介绍

2011年09月06日09:

13生意社

生意社09月06日讯 

  

(一)基本概念

  气浮处理法就是向废水中通人空气,并以微小气泡形式从水中析出成为载体,使废水中的乳化油、微小悬浮颗粒等污染物质粘附在气泡上,随气泡一起上浮到水面,形成泡沫一气、水、颗粒(油)三相混合体,通过收集泡沫或浮渣达到分离杂质、净化废水的目的。

浮选法主要用来处理废水中靠自然沉降或上浮难以去除的乳化油或相对密度接近于1的微小悬浮颗粒。

  

(二)气浮的基本原理

  1.带气絮粒的上浮和气浮表面负荷的关系

  粘附气泡的絮粒在水中上浮时,在宏观上将受到重力G浮力F等外力的影响。

带气絮粒上浮时的速度由牛顿第二定律可导出,上浮速度取决于水和带气絮粒的密度差,带气絮粒的直径(或特征直径)以及水的温度、流态。

如果带带气絮粒中气泡所占比例越大则带气絮粒的密度就越小;

而其特征直径则相应增大,两者的这种变化可使上浮速度大大提高。

  然而实际水流中;

带气絮粒大小不一,而引起的阻力也不断变化,同时在气浮中外力还发生变化,从而气泡形成体和上浮速度也在不断变化。

具体上浮速度可按照实验测定。

根据测定的上浮速度值可以确定气浮的表面负荷。

而上浮速度的确定须根据出水的要求确定。

  2.水中絮粒向气泡粘附

  如前所述,气浮处理法对水中污染物的主要分离对象,大体有两种类型即混凝反应的絮凝体和颗粒单体。

气浮过程中气泡对混凝絮体和颗粒单体的结合可以有三种方式,即气泡顶托,气泡裹携和气粒吸附。

显然,它们之间的裹携和粘附力的强弱,即气、粒(包括絮废体)结合的牢固程度与否,不仅与颗粒、絮凝体的形状有关,更重要的受水、气、粒三相界面性质的影响。

水中活性剂的含量,水中的硬度,悬浮物的浓度,都和气泡的粘浮强度有着密切的联系。

气浮运行的好坏和此有根本的关联。

在实际应用中质须调整水质。

  3.水中气泡的形成及其特性

  形成气泡的大小和强度取决于空气释放时各种用途条件和水的表面张力大小。

(表面张力是大小相等方向相反,分别作用在表面层相互接触部分的一对力,它的作用方向总是与液面相切。

  

(1)气泡半径越小,泡内所受附加压强越大,泡内空气分子对气泡膜的碰撞机率也越多、越剧烈。

因此要获得稳定的微细泡,气泡膜强度要保证。

  

(2)气泡小,浮速快,对水体的扰动小,不会撞碎絮粒。

并且可增大气泡和絮粒碰撞机率。

但并非气泡越细越好,气泡过细影响上浮速度,因而气浮池的大小和工程造价。

此外投加一定量的表面活性剂,可有效降低水的表面张力系数,加强气泡膜牢度,r也变小。

  (3)向水中投加高溶解性无机盐,可使气泡膜牢度削弱,而使气泡容易破裂或并大。

  4、表面活性剂和混凝剂在气浮分离中的作用和影响

  

(1)表面活性物质影响

  如水中缺少表面活性物质时,小气泡总有突破泡壁与大泡并合的趋势,从而破坏气浮体稳定。

此时就需要向水中投加起泡剂,以保证气浮操作中气泡的稳定。

所谓起泡剂,大多数是由极性一非极性分子组成的表面活性剂,表面活性剂的分子结构符号一般用0表示,圆头端表示极性基,易溶于水,伸向水中(因为水是强极性分子);

尾端表示非极性基,为疏水基,伸人气泡。

由于同号电荷的相斥作用,从而防止气泡的兼并和破灭,增强了泡沫稳定性,因而多数表面活性剂也是起泡剂。

  对有机污染物含量不多的废水进行气浮法处理时,气泡的分散度和泡沫的稳定性可能时是必须的(例如饮用水的气浮过滤)。

但是当其浓度超过一定限度后由于表面活性物质增多,使水的表面张力减小,水中污染粒子严重乳化,表面电位增高,此时水中含有与污染粒子相同荷电性的表面活性物的作用则转向反面,这时尽管起泡现象强烈,泡沫形成稳定;

但气一粒粘附不好,气浮效果变低。

因此,如何掌握好水中表面活性物质的最佳含量,便成为气浮处理需要探讨的重要课题之一。

  

(2)混凝剂投加产生的带电絮粒

  对含有细分散亲水性颗粒杂质(例如纸浆、煤泥等)的工业废水,采用气浮法处理时,除应用前述的投加电解质混凝剂进行表面电中和方法外,还可向水中投加(或水中存在)浮选剂,也可使颗粒的亲水性表面改变为疏水性,并能够与气泡粘附。

当浮选剂(亦属二亲分子组成的表面活性物)的极性端被吸附在亲水性颗粒表面后,其非极性端则朝向水中,这样具有亲水性表面的物质即转变为疏水性,从而能够与气泡粘附,并随其上浮到水面。

  浮选剂的种类很多,使用时能否起作用,首先在于它的极性端能否附着在亲水性污染物质表面,而其与气泡结合力的强弱,则又取决于其非极性端链的长短。

  如分离洗煤废水中煤粉时所采用的浮选剂为脱酚轻油、中油、柴油、煤油或松油等。

  (三)、气浮工艺的形式

  气浮净水上艺已开发出多种形式。

按其产生气泡方式可分为:

布气法气浮(包括转子碎气法、微孔布气法,叶轮散气浮选法等)电解气浮法;

生化气浮法(包括生物产气浮法,化学产气气浮);

溶解空气气浮(包括真空气浮法,压力气浮法的全溶气式、部分溶气式及部分回流溶气式)。

  1.布气气浮

  布气气浮是利用机械剪切力,将混合于水中的空气碎成细小的气泡,以进行气浮的方法。

按粉碎气泡方法的不同,布气气浮又分为:

水泵吸水管吸气浮、射流气浮、扩散板曝气浮选以及叶轮气浮等四种。

  

(1)水泵吸水管吸人空气气浮

  这是最简单的一种气浮方法。

由于水泵工作特性的限制,吸人的空气量不宜过多,一般不大于吸水量的10%(按体积计),否则将破坏水泵吸水管的负压工作。

另外,气泡在水泵内被破碎的不够完全,粒度大,气浮效果不好,这种方法用于处理通过除油池后的含油废水,除油效率一般为50%~65%。

  

(2)射流气浮

  采用以水带气射流器向废水中混入空气进行气浮的方法。

射流器由喷嘴射出的高速水流使吸人室形成负压,并从吸气管吸人空气,在水气混合体进入喉管段后进行激烈的能量交换,空气被粉碎成微小气泡,然后直人扩散段,动能转化为势能,进一步压缩气泡、增大了空气在水中的溶解度,最终进入气浮池中进行气水分离。

射流器各部位的尺寸及有关参数,一般都是通过试验来确定其最佳尺寸的。

  (3)扩散板曝气气浮

  这种布气浮比较传统,压缩空气通过具有微细孔隙的扩散板或扩散管,使空气以细小气泡的形式进入水中,但由于扩散装置的微孔过小易于堵塞。

若微孔板孔径过大,必须投加表面活性剂,方可形成可利用的微小气泡,从而导致该种方法使用受到限制。

但近年研制、开发的弹性膜微孔曝气器,克服了扩散装置微孔易堵或孔径大等缺点,用微孔弹性材料制成的微孔盘起到扩张、关闭作用。

  (4)叶轮气浮

  叶轮在电机的驱动下高速旋转,在盖板下形成负压吸入空气,废水由盖板上的小孔进入,在叶轮的搅动下,空气被粉碎成细小的气泡,并与水充分混合成水气混合体经整流板稳流后,在池体内平稳地垂直上升,进行气浮。

形成的泡沫不断地被缓慢转动的刮板刮出槽外。

  叶轮直径一般多为200~400mm,最大不超过600~700mm。

叶轮的转速多采用900~1500r/min,圆周线速度则为10~15m/s。

气浮池充水深度与吸气量有关一般为1.5~2.0m但不超过3m。

叶轮与导向叶片间的间距也能够影响吸气量的大小,实践证明,此间距超过8mm将使进气量大大降低。

  这种气浮设备适用于处理水量小,而污染物质浓度高的废水。

除油效果一般可达80%左右,布气气浮的优点是设备简单,易于实现。

但其主要的缺点是空气被粉碎的不够充分,形成的气泡

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > PPT模板 > 其它模板

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1