数据挖掘概念和技术第三版部分习题答案解析Word格式.docx
《数据挖掘概念和技术第三版部分习题答案解析Word格式.docx》由会员分享,可在线阅读,更多相关《数据挖掘概念和技术第三版部分习题答案解析Word格式.docx(25页珍藏版)》请在冰豆网上搜索。
数据演变分析描述和模型化随时间变化的对象的规律或趋势,尽管这可能包括时间相关数据的特征化、区分、关联和相关分析、分类、或预测,这种分析的明确特征包括时间序列数据分析、序列或周期模式匹配、和基于相似性的数据分析
2.3假设给定的数据集的值已经分组为区间。
区间和对应的频率如下。
―――――――――――――――――――――――――――――――――――――
年龄频率
1~5200
5~15450
15~20300
20~501500
50~80700
80~11044
计算数据的近似中位数值。
解答:
先判定中位数区间:
N=200+450+300+1500+700+44=3194;
N/2=1597
∵200+450+300=950<
1597<
2450=950+1500;
∴20~50对应中位数区间。
∴median=32.97岁。
2.2假定用于分析的数据包含属性age。
数据元组的age值(以递增序)是:
13,15,16,16,19,20,20,21,22,22,25,25,25,25,30,33,33,35,35,35,35,36,40,45,46,52,70。
(a)该数据的均值是什么?
中位数是什么?
均值=(13+15+16+16+19+20+20+21+22+22+25+25+25+25+30+33+33+35+35+35+35+36+40+45+46+52+70)/27
=29.96
中位数应是第14个,即x14=25=Q2。
(b)该数据的众数是什么?
讨论数据的峰(即双峰、三峰等)。
这个数集的众数有两个:
25和35,发生在同样最高的频率处,因此是双峰众数。
(c)数据的中列数是什么?
数据的中列数是最大数和最小数的均值。
即:
midrange=(70+13)/2=41.5。
(d)你能(粗略地)找出数据的第一个四分位数(Q1)和第三个四分位数(Q3)吗?
数据集的第一个四分位数应发生在25%处,即在(N+1)/4=(27+1)/4=7处。
所以:
Q1=20。
而第三个四分位数应发生在75%处,即在3×
(N+1)/4=21处。
Q3=35
(e)给出数据的五数概括。
一个数据集的分布的5数概括由最小值、第一个四分位数、中位数、第三个四分位数、和最大值构成。
它给出了分布形状良好的汇总+并且这些数据是:
13、20、25、35、70。
(f)画出数据的盒图。
(g)分位数—分位数图与分位数图的不同之处是什么?
分位数图是一种用来展示数据值低于或等于在一个单变量分布中独立的变量的粗略百分比。
这样,他可以展示所有数的分位数信息,而为独立变量测得的值(纵轴)相对于它们的分位数(横轴)被描绘出来。
但分位数—分位数图用纵轴表示一种单变量分布的分位数,用横轴表示另一单变量分布的分位数。
两个坐标轴显示它们的测量值相应分布的值域,且点按照两种分布分位数值展示。
一条线(y=x)可画到图中+以增加图像的信息。
落在该线以上的点表示在y轴上显示的值的分布比x轴的相应的等同分位数对应的值的分布高。
反之,对落在该线以下的点则低。
2.4假设医院检测随机选择的18个成年人年龄和身体脂肪数据,得到如下结果:
(a)计算年龄和脂肪百分比的均值、中位数和标准差.
年龄均值=(23+23+27+27+39+41+47+49+50+52+54+54+56+57+58+58+60+61)/18=836/18=46.44,
中位数=(50+52)/2=51,
标准差=方差的平方根=开根号(1/n[∑(Xi)2-1/n(∑Xi)2])=开根号1/18[2970.44]=12.85.
脂肪百分比均值=28.78,中位数=30.7,标准差=8.99.
(b)绘制年龄和脂肪百分比的盒图
(c)根据这两个属性,绘制散布图,各q-q图
q-q图散布图
(d)根据z-score规范化来规范化这两个属性(P46)
(e)计算相关系数(皮尔逊积矩系数).这两个变量是正相关还是负相关?
ra,b=∑(ai-A)(bi-B)/NσAσB=(∑(aibi)-NAB)/NσAσB=(∑(aibi)-18*46.44*28.78)/18*12.85*8.99=0.82
相关系数是0.82。
变量呈正相关。
3.3使用习题2.4给出的age数据回答下列问题:
(a)使用分箱均值光滑对以上数据进行光滑,箱的深度为3。
解释你的步骤。
评述对于给定的数据,该技术的效果。
(b)如何确定数据中的离群点?
(c)对于数据光滑,还有哪些其他方法?
解答:
评述对于给定的数据,该技术的效果。
用箱深度为3的分箱均值光滑对以上数据进行光滑需要以下步骤:
步骤1:
对数据排序。
(因为数据已被排序,所以此时不需要该步骤。
)
步骤2:
将数据划分到大小为3的等频箱中。
箱1:
13,15,16箱2:
16,19,20箱3:
20,21,22
箱4:
22,25,25箱5:
25,25,30箱6:
33,33,35
箱7:
35,35,35箱8:
36,40,45箱9:
46,52,70
步骤3:
计算每个等频箱的算数均值。
步骤4:
用各箱计算出的算数均值替换每箱中的每个值。
44/3,44/3,44/3箱2:
55/3,55/3,55/3箱3:
21,21,21
24,24,24箱5:
80/3,80/3,80/3箱6:
101/3,101/3,101/3
121/3,121/3,121/3箱9:
56,56,56
聚类的方法可用来将相似的点分成组或“簇”,并检测离群点。
落到簇的集外的值可以被视为离群点。
作为选择,一种人机结合的检测可被采用,而计算机用一种事先决定的数据分布来区分可能的离群点。
这些可能的离群点能被用人工轻松的检验,而不必检查整个数据集。
其它可用来数据光滑的方法包括别的分箱光滑方法,如中位数光滑和箱边界光滑。
作为选择,等宽箱可被用来执行任何分箱方式,其中每个箱中的数据范围均是常量。
除了分箱方法外,可以使用回归技术拟合成函数来光滑数据,如通过线性或多线性回归。
分类技术也能被用来对概念分层,这是通过将低级概念上卷到高级概念来光滑数据。
3.5如下规范化方法的值域是什么?
(a)min-max规范化。
值域是[new_min,new_max]。
(b)z-score规范化。
值域是[(old_min-mean)/σ,(old_max-mean)/σ],总的来说,对于所有可能的数据集的值域是(-∞,+∞)。
(c)小数定标规范化。
值域是(-1.0,1.0)。
3.7使用习题2.4给出的age数据,回答以下问题:
(a)使用min-max规范化将age值35变换到[0.0,1.0]区间。
(b)使用z-score规范化变换age值35,其中age的标准差为12.94岁。
(c)使用小数定标规范化变换age值35。
(d)对于给定的数据,你愿意使用哪种方法?
陈述你的理由。
3.9假设12个销售价格记录组已经排序如下:
5,10,11,13,15,35,
50,55,72,92,204,215。
使用如下每种方法将其划分成三个箱。
(a)等频(等深)划分。
(b)等宽划分。
(c)聚类。
bin1
5,10,11,13
15,35,50,55
bin172,91,204,215
每个区间的宽度是:
(215-5)/3=70
5,10,11,13,15,35,50,55,72
91
204,215
(c)聚类。
我们可以使用一种简单的聚类技术:
用2个最大的间隙将数据分成3个箱。
5,10,11,13,15
35,50,55,72,91
3.11使用习题2.4给出的age数据,
(a)画出一个等宽为10的等宽直方图;
(b)为如下每种抽样技术勾画例子:
SRSWOR,SRSWR,聚类抽样,分层抽样。
使用大小为5的样本和层“青年”,“中年”和“老年”。
8
7
6
5
4
3
2
1
152535455565
元组:
T1
13
T10
22
T19
35
T2
15
T11
25
T20
T3
16
T12
T21
T4
T13
T22
36
T5
19
T14
T23
40
T6
20
T15
30
T24
45
T7
T16
33
T25
46
T8
21
T17
T26
52
T9
T18
T27
70
SRSWOR和SRSWR:
不是同次的随机抽样结果可以不同,但前者因无放回
所以不能有相同的元组。
SRSWOR
(n=5)
SRSWR
T11
聚类抽样:
设起始聚类共有6类,可抽其中的m类。
Sample1
Sample2
Sample3
Sample4
Sample5
Sample6
T6
T7
T8
T9
Sample2Sample5
T21
T22
T23
T24
T25
T1
young
middleage
T2
T3
T4
T5
senior
Senior
4.3假定数据仓库包含三维:
time,doctor和patient;
和两个度量:
count和charge;
其中,charge是医生对病人一次诊治的收费。
(a)列举三种流行的数据仓库建模模式
三类模式一般用于建模数据仓库架构的星形模型,雪花模型和事实星座模型。
(b)使用(a)列举的模式之一,画出上面的数据仓库的模式图
数据仓库的星形模型
(C)由基本方体[day,doctor,patient]开始,为列出2004年每位医生的收费总数,应当执行哪些OLAP操作?
沿课程(course)维从course_id“上卷”到department。
●沿时间(time)维从day“上卷”到year。
●取time=2004,对维time作“切片”操作
●沿病人(patient)维从个别病人“上卷”到全部病人。
(d)为得到同样结果,写一个SQL查询。
假定数据存放在关系数据库中,其模式为
fee(day,month,year,doctor,hospital,patient,count,charge)。
SQL查询语句如下:
selectdoctor,SUM(charge)
fromfee
whereyear=2004
groupbydoctor
4.4假定BigUniversity的数据仓库包含如下4个维:
student(student_name,
area_id,major,status,university),course(course_name,department),semester(semester,year)和instructor(dept,rank);
2个度量:
count和avg_grade。
在最低概念层,度量avg_grade存放学生的实际课程成绩。
在较高概念层,avg_grade存放给定组合的平均成绩。
(a)为该数据仓库画出雪花形模式图。
(b)由基本方体[student,course,semester,instructor]开始,为列出BigUniversity每个学生的CS课程的平均成绩,应当使用哪些特殊的OLAP操作。
(c)如果每维有5层(包括all),如“student<
major<
status<
university<
all”,该立方体包含多少方体?
a)为该数据仓库画出雪花形模式图。
雪花模式如图所示。
b)由基本方体[student,course,semester,instructor]开始,为列出BigUniversity每个学生的CS课程的平均成绩,应当使用哪些特殊的OLAP操作。
这些特殊的联机分析处理(OLAP)操作有:
i.沿课程(course)维从course_id“上卷”到department。
ii.沿学生(student)维从student_id“上卷”到university。
iii.取department=“CS”和university=“BigUniversity”,沿课程
(course)维和学生(student)维切片。
iv.沿学生(student)维从university下钻到student_name。
c)如果每维有5层(包括all),如“student<
这个立方体将包含54=625个方体。
4.5假定数据仓库包含4维:
date,spectator,location,和game,和两个度量:
其中,charge是观众在给定的日期观看节目的付费。
观众可以是学生、成年人或老年人,每类观众有不同的收费标准。
(a)画出该数据仓库的星形模式图。
星形模式图如下:
b.由基本方体[date,spectator,location,game]开始,为列出2004年学生观众在GM_Place的总付费,应执行的OLAP操作:
●沿时间(date)维从date_id“上卷”到year。
●沿时间(game)维从game_id“上卷”到全部。
●沿时间(location)维从location_id“上卷”到location_name。
●沿时间(spectator)维从spectator_id“上卷”到status。
●以status="
students"
locationname="
GMPlace"
andyear=2004作转轴操作
4.6数据仓库可以用星形模式或雪花模式建模。
简略讨论这两种模式的相似点和不同点,然后分析它们的相对做优、缺点。
哪种模式更实用,给出你观点并陈述你的理由。
答:
星形模式或雪花模式的相似点是它们包含一个事实表和一些维表。
它们主要的不同在于,雪花模式的维表可能是规范化形式,以便减少了冗余,这种表易于维护并节省存储空间。
然而,与巨大的事实表相比,这种空间的节省可以忽略。
此外,由于执行查询需要更多的连接操作,雪花形结构可能降低浏览的性能,这样,系统的性能可能相对的受到影响。
星型模式的优点是简单、这使得它更有效,但它需要更多的空间。
因此,只要空间的要求不是太大时,星形模式比雪花模式更好,因为通常效率比空间具有更高的优先级。
在工业上,有时可能将数据从一个雪花模式非规范化为星型模式以加快处理速度,另一种选择是保持雪花模式的维表,然后相同数据的当前用户折叠为星形。
4.9
4.11
5.15.2
5.4假定基本方体有三维A,B,C,其单元数如下:
|A|=1000000,|B|=100,|C|=1000.假定每维均等地分块成10部分。
(a)假定每维只有一层,画出完整的立方体的格。
完整的立方体的格如下图
(b)如果每个立方体单元存放一个4字节的度量,若立方体是稠密的,所计算的立方体有多大?
所计算的立方体大小如下:
all:
A:
1,000,000;
B:
100;
C:
1,000;
小计:
1,001,100
AB:
1,000,000*100=100,000,000;
BC:
100*1,000=100,000;
AC:
1,000,000*1,000=1,000,000,000;
小计:
1,100,100,000
ABC:
1,000,000*100*1,000=100,000,000,000
总和:
1+1,001,100+1,100,100,000+100,000,000,000=101,101,101,101*4=404,404,404,404字节
(C)指出空间需求量最小的立方体中的块计算次序,并计算2-D平面计算所需要的内存空间总量。
顺序计算,需要最少数量的空间B-C-A.如图所示:
计算二维平面需要的总主内存空间是:
总空间=(100×
1,000)+(1,000,000×
10)+(100×
10,000)=20,100,000单元*4字节/单元=80,400,000字节
6.3Apriori算法使用子集支持性质的先验知识。
(a)证明频繁项集的所有非空的子集也必须是频繁的。
设s是一个频繁项集,min_sup是最小支持度阀值,任务相关的数据D是数据库事务的集合,|D|是D有事务量,则有Support_count(s)=min_sup×
|D|;
再