电磁场近远区区分方法及电磁辐射频率范围Word下载.docx
《电磁场近远区区分方法及电磁辐射频率范围Word下载.docx》由会员分享,可在线阅读,更多相关《电磁场近远区区分方法及电磁辐射频率范围Word下载.docx(10页珍藏版)》请在冰豆网上搜索。
对于良导体,电磁波能量基本上被全部反射回去,不能透射到导体深处。
在介质的分界面起伏不平的程度远小于波长时,形成镜面反射,入射角等于反射角。
否则形成漫反射(散射)。
因此由平整的导体所形成的反射波导致的干涉叠加容易在空间中形成驻波。
测量时给予注意。
综合经上因素,测量点周围的物体都可反射电磁波,与其他传播路径(包括直射、地面反射等)的电磁波产生相消干涉或相加干涉,影响测量结果。
因此,对电磁测量的要求:
①测量无关人员应尽量远离测量天线(探头),测量人员不能站在电磁波的传播路径进行测量,以防止由测量人员身体反射电磁波带来影响。
②对职业暴露测量布点应尽量放在常规工作位置,在操作工人离开的情况下进行。
③对于一般的电磁辐射环境监测布点,测点应选在开阔地段,要尽可能避开各种因素的影响。
频谱
时域
将电磁场量(E、H或S)表示成随时间变化的函数g(t),称为时域表示。
在时域表示中,平面直角坐标系的横轴为时间t,纵轴为电磁场量大小g(t),表示电磁场量大小随时间变化,不同时刻t的电磁场量大小g(t)不同。
将电磁场量换成股票指数,就是股市涨跌图了。
时域表示很直观,通过常识容易理解。
频域
将电磁场量(E、H或S)表示成随时间变化的函数g(t),表示成频率的函数G(f),称为频域表示。
函数G(f)称为电磁场量的频谱。
在频域表示中,平面直角坐标系的横轴为频率f,纵轴为电磁场量大小G(f),表示电磁场量大小随频率而变,不同频率f的电磁场量大小G(f)不同,换一个更能显露其物理意义的等效说法,不同频率分量f的频谱强度G(f)不同。
(时域)正弦波为单一频率的波,其频谱为一根竖线。
如手机机站信号。
基波和谐波
周期为T的非正弦波可分解成(看作)一系列正弦波的迭加,这些正弦波中频率最低的称为基波,其频率f0=1/T,其余正弦波称为谐波,频率为nf0,n=2,3,4……,n称为谐波次数。
周期性的非正弦波频谱是离散的。
一般基波频谱强度最大,谐波次数越高,频谱强度越小。
为了简化设备,降低成本,工科医设备的电磁振荡源的频谱质量很差,除了振荡频率(周期)的变化之外,振荡波形也有畸变,偏离正弦波形,造成谐波干扰。
这类干扰源中常见的典型设备是塑料热合机。
其基波频率虽然远离广播电视的接收频率,但是其谐波频率可能落入广播电视的接收频率范围,干扰电视的图像与声音。
广播电视及移动通信等携带有信息的调幅(AM)、调频(FM)及调相电磁波源的频谱是离散的,频谱范围较窄。
其测量可用峰值检波的电视场强仪或频谱分析仪。
非周期性的脉冲波的频谱是连续的,没有基波频率,频谱低端从零频率(直流)开始。
脉冲波的上升及下降沿越陡,脉冲越窄(持续时间越短),频谱就越宽。
火花放电产生的电磁脉冲就是这种脉冲波,其频谱很宽,可对不同频段的信号接收造成干扰。
其测量必须用准峰值检波的测量接收机、干扰场强仪或频谱分析仪。
雷雨闪电时所有波段的收音机、电视机都会有大的杂音,街上的摩托车报警器发出叫声,说明闪电所发射电磁波的频谱很宽。
闪电是一种火花放电,所发射电磁波是脉冲波,由此可从经验了解到,脉冲波的频谱很宽。
极化
定义:
在最大辐射方向上电场矢量端点运动的轨迹。
电场矢量端点运动的轨迹如为园,称园极化。
如为椭圆,称椭圆极化。
电场矢量端点运动的轨迹如为直线,称线极化,以地面为参考,又分为垂直极化和水平极化。
一般而言,单根线状发射天线的方向即为所发射电磁波的极化方向,中波天线垂直于地面,所以辐射垂直极化波,主要传播途径为地波传播;
短波天线平行于地面,所以辐射水平极化波,主要传播途径为天波传播(通过电离层反射)。
四、电磁辐射的测量基础知识
电磁辐射的测量方法通常与测量点位和辐射源的距离有关,即,所进行的测量是远场测量还是近场测量。
由于远场和近场的情况下,电磁场的性质有所不同,因此,要对远场和近场测量有明确的了解。
1、电磁场的远场和近场划分
电磁辐射源产生的交变电磁场可分为性质不同的两个部分,其中一部分电磁场能量在辐射源周围空间及辐射源之间周期性地来回流动,不向外发射,称为感应场;
另一部分电磁场能量脱离辐射体,以电磁波的形式向外发射,称为辐射场。
一般情况下,电磁辐射场根据感应场和辐射场的不同而区分为远区场(辐射场)和近区场(感应场)。
由于远场和近场的划分相对复杂,要具体根据不同的工作环境和测量目的进行划分,一般而言,以场源为中心,在三个波长范围内的区域,通常称为近区场,也可称为感应场;
在以场源为中心,半径为三个波长之外的空间范围称为远区场,也可称为辐射场。
近区场通常具有如下特点:
近区场内,电场强度与磁场强度的大小没有确定的比例关系。
即:
E377H。
一般情况下,对于电压高电流小的场源(如发射天线、馈线等),电场要比磁场强得多,对于电压低电流大的场源(如某些感应加热设备的模具),磁场要比电场大得多。
近区场的电磁场强度比远区场大得多。
从这个角度上说,电磁防护的重点应该在近区场。
近区场的电磁场强度随距离的变化比较快,在此空间内的不均匀度较大。
远区场的主要特点如下:
在远区场中,所有的电磁能量基本上均以电磁波形式辐射传播,这种场辐射强度的衰减要比感应场慢得多。
在远区场,电场强度与磁场强度有如下关系:
在国际单位制中,E=377H,电场与磁场的运行方向互相垂直,并都垂直于电磁波的传播方向。
远区场为弱场,其电磁场强度均较小
近区场与远区场划分的意义:
通常,对于一个固定的可以产生一定强度的电磁辐射源来说,近区场辐射的电磁场强度较大,所以,应该格外注意对电磁辐射近区场的防护。
对电磁辐射近区场的防护,首先是对作业人员及处在近区场环境内的人员的防护,其次是对位于近区场内的各种电子、电气设备的防护。
而对于远区场,由于电磁场强较小,通常对人的危害较小。
对我们最经常接触的从短波段30MHz到微波段的3000MHz的频段范围,其波长范围从10米到1米。
2、远区场的测量
在远区场(辐射场区),可引入功率密度矢量(波印廷矢量),电场矢量、磁场矢量、波印廷矢量三者方向互相垂直,波印廷矢量的方向为电磁波传播方向。
在数值上,E=377H,S=EH=E2/377。
其中电场强度E的单位是(V/m),磁场强度H的单位是(A/m),功率密度的单位是(W/m2),全部是国际单位制(SI)。
由公式可看出,在远场区,电场与磁场不是独立的,可以只测电场强度,磁场强度及功率密度中的一个项目,其他两个项目均可由此换算出来。
一般情况,关于远场和近场的测量问题可以简化为:
国标规定,当电磁辐射体的工作频率低于300MHz时,应对工作场所的电场强度和磁场强度分别测量。
当电磁辐射体的工作频率大于300MHz时,可以只测电场强度。
300MHz频率相应的波长为1米,λ/6为16cm,16cm之外辐射场占优势。
如按3λ的划分界限,距辐射源3米之外可认为是远场区。
一般电磁环境是指在较大范围内由各种电磁辐射源,通过各种传播途径造成的电磁辐射背景值,因而属于远区场,辐射的频谱非常宽,电磁场强度均较小。
1GHz以下远区辐射场的测量,可用远区场强仪,也可用干扰场强仪。
3、近区场的测量
在近场区(感应场区),电场强度E与磁场强度H的大小没有确定的比例关系,即:
E377H,需要分别测量电场强度E与磁场强度H的大小。
对于电压高而电流小的场源,在感应场区内主要是电场,主要测量电场,对于电压低而电流大的场源(如感应线圈),在感应场区内主要是磁场,主要测量磁场。
例如,对于没有接上电器的墙上电源插座,电流基本为零,电压不为零,插座在其附近产生一定强度的工频电场,但产生的工频磁场基本为零。
国家标准限值中30MHz以下以场强为准,因为该频段的波长大于10米,测量点处的感应场常常不能忽略,电场强度E与磁场强度H的比例关系不确定。
由前面的场强与距离的关系可知,近场区场强很大(根据不同的设备,电场强度可能从几十到几百V/m,磁场强度可达到数A/m),但场强随距离的增大衰减得很快,即场强变化梯度很大,是一种非常复杂的非均匀场。
因此,近区场强仪的量程应当足够大,而测量探头应当足够小,测量结果才能代表测试点的场强。
近场区监测主要属于工作场所监测。
由于近区场强很大,较远处的其它电磁辐射源的贡献可忽略不计,因此,近区场强测量不采用选频式仪器。
可用综合场强仪测量近区场强,如意大利PMM公司的8053型仪器,具有较好的测量精度和强大的数据处理功能。
目前的综合场强仪与早期的近区场强仪的不同:
前者为各向同性,测量时不必调整探头方向。
前者较后者频率范围更宽。
例:
具体辐射源的近场(感应场区)与远场(辐射场区)(=c/f)
附:
场区的具体划分
场强与距离的关系
以r表示测量点到辐射源的距离,则在该点的感应场强度与r2至r3成反比,辐射场强度与r成反比(因此,辐射场强度与距离r的乘积与r无关,称为场强距离乘积)。
在靠近辐射源的地方,随着距离r的减小,感应场强度急剧增加。
近场与远场的划分
当测量距离r=λ/2π≈λ/6时,感应场强度与辐射场强度相当。
在距离辐射源比较近(r<
λ/6)的地方,感应场强度大于辐射场强度,称为近场(区)或感应场区,较远的地方(r>
λ/6)则相反,辐射场占优势,称为远场(区)或辐射场区。
近场区和远场区的提法被广为使用,但在不同的应用领域,其划分界限不统一。
也称为近区场和远区场。
一般当r大于3λ时,可忽略感应场的成份,认为处于远场(区)。
当辐射源尺度与波长可比拟时,还可将辐射场区分为辐射近场区和辐射远场区。
辐射远场区的定义是,"
辐射场强度角分布基本上与距天线的距离无关的场区"
,在辐射远场区,将天线上各点到测量点的连线当作是平行的,所引入的误差小于一定的限度。
如天线尺寸为D,则远场区距离应大于2D2/λ。
当辐射源尺寸D的数量级小于波长λ时(2D2/λ<
λ/6,D<
λ/3.5),辐射近场区范围小于感应场区,辐射场区全部是辐射远场区。
如果测量天线为微波段的面天线,而且尺寸较大,所测辐射源与测量天线的距离大于2D2/λ认为是辐射远场区。
由以上公式可见,近场与远场的划分界限与辐射源频率(波长)有关。
4、电磁辐射频率范围
⑴全范围
广义上包括X射线、γ射线、宇宙射线等电离电磁辐射,狭义上包括0~3×
1012Hz,从静电场、静磁场到亚毫米波,该频率范围的电磁辐射不能造成原子与分子的电离,不管其强度有多大。
⑵目前我国管理范围
目前认为影响较大、受关注、研究较多并已经制定相应标准限值的频段有:
工频50Hz,射频100kHz-300GHz。
⑶各波段名称、频率范围及波长
波段名称频段名称频率范围波长
工频50/60Hz
超长波甚低频(VLF)3~30KHz100~10Km
长波低频(LF)30~300KHz10~1Km
中波中频(MF)0.3~3MHz1~0.1Km
短波高频(HF)3~30MHz100~10m
超短波(米波)甚高频(VHF)30~300MHz10~1m
分米波微波超高频(UHF)0.3~3GHz1~0.1m
厘米波特高频(SHF)3~30GHz10~1cm
毫米波极高频(EHF)30~300GHz10~1mm
⑷常见电磁辐射源的频率范围
电磁辐射污染源监测要求所用仪器的测量频率范围与污染源的工作频率相适应,因此有必要了解常见电磁辐射源的频率。
GSM移动通信基站:
900/1800MHz
中波广播:
535-1605KHz
短波广播:
4-19MHz内的部分频段
调频(声音)广播:
88-108MHz
电视:
50-92,168-223,471-566,607-958MHz五个频段
家用微波炉:
2450MHz,工业微波炉:
915,2450MHz
高压电力设备:
工频50Hz,电磁噪声干扰中短波(测量范围0.5-30MHz)
高频感应加热设备(如熔炼炉、淬火炉等):
工作频率几百kHz
高频介质加热设备:
工作频率几MHz至几十MHz。
如塑料热合机27.12,40.68MHz。
超短波电疗机:
40.68MHz
国际电信联盟(ITU)分配给工科医(ISM)设备的自由辐射频率为13.56MHz,27.12MHz,40.68MHz,2.45GHz等。
在这些频率范围内的电磁辐射强度不受限制。
5、电磁能的发射与传播途径
⑴电磁发射
是指"
从源向外发出电磁能的现象"
。
电磁发射分为辐射发射和传导发射。
⑵辐射发射
是"
通过空间传播的、有用的或不希望有的电磁能量"
而辐射发射经常称之为电磁辐射,其定义为:
"
a.能量以电磁波形式由源发射到空间的现象。
b.能量以电磁波形式在空间传播。
注:
电磁辐射一词的含义有时也可引申,将电磁感应(即感应场)也包括在内。
我们在日常工作中使用的是其引申含义。
⑶传导发射
沿电源线或信号线传输的电磁发射。
⑷电磁环境
电磁环境的定义是"
存在于给定场所的所有电磁现象的总和。
电磁环境包括辐射发射与传导发射。
但从环境工程来看,电磁环境的主要影响因素是电磁辐射。
实际上电磁辐射骚扰源常常也伴随着传导发射。
实际传播途径可以是辐射与传导的组合(注意前面是发射途径),比如电磁波到达建筑物时,既可以(穿过墙壁或)通过门窗进入室内,也可以通过电线、钢筋传导进入室内,如在永安761台监测中,发现室内电线附近的电场强度明显高于室内的平均电场强度。
测某基站时发现横梁下电场强度高于该点旁边1米位置的电场强度。
五、电磁辐射测量仪器
电磁辐射的测量按测量场所分为作业环境、特定公众暴露环境、一般公众暴露环境测量。
按测量参数分为电场强度、磁场强度和电磁场功率通量密度等的测量。
对于不同的测量应选用不同类型的仪器,以期获取最佳的测量结果。
测量仪器根据测量目的分为非选频式宽带辐射测量仪和选频式辐射测量仪。
无论是非选频式宽带辐射测量仪还是选频式辐射测量仪,基本构造都是由天线(传感器)及主机系统两部分组成的
1非选频式宽带辐射测量仪(综合场强仪)
工作原理
1.1电场探头
偶极子和检波二极管组成探头
这类仪器由三个正交的2~10cm长的偶极子天线,端接肖特基检波二极管、RC滤波器组成。
检波后的直流电流经高阻传输线或光缆送入数据处理和显示电路。
通常这类仪器探头响应快,动态范围大,但由于作为天线的偶极子的长度应远小于被测频率的半波长,以避免在被测频率下谐振。
这一特性决定了这类仪器只能在低于几吉赫频率范围使用,不过随着仪器技术的不断发展,近年也有厂家能将频率范围扩展到四十吉赫频率,甚至更高范围。
热电偶型探头
采取三条相互垂直的热电偶结点阵作电场测量探头,提供了和热电偶元件切线方向场强平方成正比的直流输出,待测场强与极化无关,保证了探头有极宽的频带,容易做到极高的频率,但探头响应和动态范围要相对差一些。
1.2磁场探头
由三个相互正交环天线和二极管、RC滤波元件、高阻线组成,从而保证其全向性和频率响应。
对电性能的要求
使用非选频式宽带辐射测量仪实施环境监测时,为了确保环境监测的质量,应对这类仪器电性能提出基本要求:
各向同性误差≤±
1dB
系统频率响应不均匀度≤±
3dB
灵敏度:
0.5V/m
校准精度:
±
0.5dB
2选频式辐射测量仪(频谱仪或测试接收机)
这类仪器用于环境中低电平电场强度、电磁兼容、电磁干扰测量。
除场强仪(或称干扰场强仪)外,可用接收天线和频谱仪或测试接收机组成的测量系统经校准后,用于环境电磁辐射测量。
选频的意思是只选择某些频率进行测量,只让很小的频率范围的信号进来,滤除其余频率的信号。
选频式测量仪器的灵敏度较非选频式的高很多。
根据所测量信号频谱的不同,选频式射频辐射测量仪器也按检波方式分为两大类,一类采用峰值检波,测量广播电视及通信等较窄的辐射源;
另一类采用准峰值检波,测量火花放电等频谱范围很宽的电磁脉冲源。
电视场强仪,远区场强仪,峰值检波。
干扰场强仪,测量接收机,准峰值检波。
频谱分析仪,峰值检波及准峰值检波二者均有。
场强仪(干扰场强仪)
待测场的场强值:
E(dBμV/m)=K(dB)+Vr(dBμV)+L(dB)………………………………(2.1)
式中K是天线校正系数,它是频率的函数,可由场强仪的附表中查得。
场强仪的读数Vr必须加上对应K值和电缆损耗L才能得出场强值。
但近期生产的场强仪所附天线校正系数曲线所示K值已包括测量天线的电缆损耗L值。
当被测场是脉冲信号时,不同带宽Vr值不同。
此时需要归一化于1MHz带宽的场强值,即:
E(dBμV/m)=K(dB)+Vr(dBμV)+20lg+L(dB)…………………………(2.2)
BW为选用带宽,单位MHz。
测量宽带信号环境辐射峰值场强时,要选用尽量宽的带宽。
相应平均功率密度为:
…(2.3)
上式中q为脉冲信号占空比,K、L值查表可得,Vr为场强值读数,于是E和Pd可以方便地计算出来。
频谱仪测量系统
这种测量系统工作原理和场强仪一致,只是用频谱仪作接收机,此外频谱仪的dBm读数须换算
dBμV。
对50Ω系统,场强值为:
E(dBμV/m)=K(dB)+A(ABm)+107(dBμV)+L(dB)………………………………(2.4)
频谱仪的类型不受限制,频谱仪天线系统必须校准。
用于环境电磁辐射测量的仪器种类较多,凡是用于EMC(电磁兼容)、EMI(电磁干扰)目的的测试接收机都可用于环境电磁辐射监测。
专用的环境电磁辐射监测仪器,也可用上面介绍的方法组成测量装置实施环境监测。
天线种类
作为测量用的天线,其参数主要是天线系数,应具有高的精确度。
天线系数AF:
对于电场测量AF=E/vi,对于磁场测量AF=H/vi,vi为电压表所测得的电压。
电压表读数乘以天线系数即为所测场强,以dB表示时为相加。
对于选频式测量仪表,测量频率是变化的,对同一根天线,天线系数随频率而变。
①半波天线
半波天线为全长等于所测量电磁波波长一半的对称振子天线,用于米波段电场测量。
测量频带窄,实际上不常用作测量天线。
②环天线
环天线为30MHz以下的磁场测量天线,磁场测量必须用环天线,环面积内磁通量的变化将在环线圈上产生感应电压。
电压大小正比于环面积、环线圈匝数、待测磁场强度及频率。
③双锥天线
20-300MHz频段的电场测量天线。
为半波天线的改进型。
④对数周期天线
⑤单极(鞭状、杆)天线
其他还有喇叭天线和超宽带复合式天线
3工频测量仪器
工频场强测量频率低,一般不叫天线。
工频电场
工频电场测量探头由两个导体半球组成偶极子,沿赤道平面相互绝缘。
目前仪器探头有方向性的和全向的两种。
意大利PMM公司的工频电场探头外形为正方体,可测量工频电场的全向三维分量,然后合成总的工频电场值,测量时不必调整探头方向。
工频磁场
主要结构由三个相互正交环天线组成。