二年级奥数填图与拆数Word下载.docx
《二年级奥数填图与拆数Word下载.docx》由会员分享,可在线阅读,更多相关《二年级奥数填图与拆数Word下载.docx(17页珍藏版)》请在冰豆网上搜索。
①要使每边三张卡片上的数相加之和等于13时,就要将13分拆成三个数之和.
以上的分拆是分两步进行的.
可以看出,因为8+5=13,所以8和5不能填在同一边(若把8和5填在同一边,再加上第三个数时必然会大于13,这不符合题目要求),也就是说,要把8和5分别填在相对的两个角上的方格里.如图9—11所示.
②要使每边三张卡片上的数相加之和等于15时,就要将15分拆成三个数之和:
以上的分拆也是分两步进行的.
可以看出,因为8+7=15,所以8和7不能填在同一边,也就是说,要把8和7分别填在相对的两个角的方格里,如图9—12所示.
例4图9—13是由八个小圆圈组成的,每个小圆圈都有直线与相邻的小圆圈相接连.请你把1、2、3、4、5、6、7、8八个数字分别填在八个小圆圈内,但相邻的两个数不能填入有直线相连的两个小圆圈(例如,你在最上头的一个小圆圈中填了5,那么4和6就不能填在第二层三个小圆圈中了).
答案如图9—14所示.中间的两个圈只能填1和8,是这样分析出来的:
在1、2、3、4、5、6、7、8这八个数字中,只有“1”和“8”这两个数,各有一个相邻的数,也就是有六个不相邻的数.中间的两个小圆圈,每个都有六条线连着六个小圆圈,每个小圆圈中恰好能填一个与它不相邻的数.其余的数每个都有两个相邻的数,如4有两个相邻的数2和3,所以在1至8这八个数中4只有五个不相邻的数,这样4就不能填到中间的小圆圈中了.
根据下面四个算式,能否发现其中的规律,然后在
中,填入适当的数。
1×
5+4=9=3×
3
2×
6+4=16=4×
4
3×
7+4=25=5×
5
解答:
100×
104+4=10404=102×
102
【小结】四个算式中最重要的规律是两个因数相差4,因此有10×
14=144=12×
12
又102×
102=10404,10404-4=10400=100×
104,
所以有100×
1.在图9—15,9—16中,只能用图中已有的三个数填满其余的空格,并要求每个数字必须使用3次,而且每行、每列及每条对角线上的三个数之和都必须相等.
2.把10、12、14这三个数填在图9—17的方格中,使每行、每列和每条对角线上的三个数之和都相等.
3.在图9—18中,三个圆圈两两相交形成七块小区域,分别填上1~7七个自然数,在一些小区域中,自然数3、5、7三个数已填好,请你把其余的数填到空着的小区域中,要求每个圆圈中四个数的和都是15.
4.与第3题的图相似,只是已经把1、4、6三个数填好,请你继续把图9—19填满.
5.图9—20中有三个大圆,在大圆的交点上有六个小圆圈.请你把1、2、3、4、5、6六个数分别填在六个小圆圈里,要求每个大圆上的四个小圆圈中的数之和都是14.
6.图9—21是由四个三角形组成的,每个三角形上都有三个小圆圈.请你把1、2、3、4、5、6、7、8、9这九个数填在九个小圆圈中,让每个三角形上的三个数之和都是15.
7.图9—22是由四个扁而长的圆圈组成的,在交点处有8个小圆圈.请你把1、2、3、4、5、6、7、8这八个数分别填在8个小圆圈中.要求每个扁长圆圈上的四个数字的和都等于18.
1.解:
因为空格中只能用4、6、8填,不难看出左上角的空格只能填6,见图9—23.同样道理,右下角也只能填6,见图9—24.下一步就能容易地填满其他空格了(见图9—25).
在图9—16中,显然右下角应填7,见图9—26.而右上角应填5,见图9—27.这样其他空格随之就可以填满了,见图9—28.
2.解:
模仿例1的填法.首先将10、12、14三个数的中间数12填在中心方格中,并使一条对角线上的三个数都是12,见图9—29,第二步再按要求填满其他空格就容易了,见图9—30.
3.解:
这样想,图9—18中还空着四个小区域需要填入四个数:
1、2、4、6.还可看出中心的一个小区域属于三个圆圈,这里应填哪个数呢?
下面用拆数方法来分析确定.
先见图9—18中的圆圈Ⅰ,圆中已有两个数5和7,所以空着的两个小区域应填的两个数之和为15-5-7=3.再将3分拆成3=1+2,但是在1和2中应把哪一个填到中心的小区域里,现在还不能肯定下来.
再看圆圈Ⅱ,圆中已有两个数5和3,15-5-3=7,而7=1+6,即可把7分拆成7=1+6.
最后看圆圈Ⅲ,15-3-7=5,而5=1+4.至此可以看出,应该把“1”填在中心的小区域了(见图9—31).
4.解:
模仿第3题解法拆数:
要填2、3、5、7.
15-4-6=5,5=2+3
15-1-6=8,8=3+5
15-1-4=10,10=3+7
所以,应把3填在中心的小区域,见图9—32.
5.解:
如图9—33所示,因为要求大圆上的四个小圆圈中的四个数之和等于14,所以就要把14分拆成四个数相加之和,而且按题目要求这四个数要在1、2、3、4、5、6中选取;
14=6+5+2+1,
14=6+4+3+1,
14=5+4+3+2.
6.解:
先将15分拆成三个数之和,并且要求各数在1、2、3、4、5、6、7、8、9这九个数中选取.用二步分拆法:
15=9+6=9+5+1
15=8+7=8+4+3
15=7+8=7+6+2
以上三式把九个数都用上了.这样(9,5,1)、(8,4,3)和(7,6,2)就可以分别填入角上的3个三角形中.再注意到中间的三角形的三个小圆圈分属于角上的3个三角形,所以从三组中各取一个数重新组成一组填入中间三角形,如取(9,4,2),填出下面的结果,见图9—34.注意此题填法不惟一,你还能想出别种填法吗?
7.解:
因为题目要求扁长圆圈上的四个数之和等于18,所以就要将18分拆成四个不相等的整数之和,而且各数要从1~8这八个数中选取.如:
18=8+7+2+1
18=8+5+2+3
18=7+6+4+1
18=6+5+4+3
即得到四组数:
(8,7,2,1)、(8,5,2,3)、(7,6,4,1)、(6,5,4,3),把它们填入扁长圆圈时,注意适当调整,就可以得出题目的答案如图9—35所示.