烟筒屯中学大事记各学校1文档格式.docx
《烟筒屯中学大事记各学校1文档格式.docx》由会员分享,可在线阅读,更多相关《烟筒屯中学大事记各学校1文档格式.docx(6页珍藏版)》请在冰豆网上搜索。
3.理解一个锐角的正弦、余弦值的唯一性,是理解三角函数的核心.
锐角的正弦、余弦值是这样规定的:
当一个锐角确定了,那么这个锐角所在的直角三角形虽然有无穷多个,但它们都是彼此相似的.如上图,当确定时,包含的直角三角形有无穷多个,但它们彼此相似:
∽∽∽……因此,由于相似三角形的对应边成比例,所以这些三角形的对应边的比都是相等的.
这就是说,每当一个锐角确定了,包含这个角的直角三角形的上述2种比值也就唯一确定了,它们有确定不变的对应关系.为了简单地表达这些对应关系,我们引入了正(余)弦的说法,创造了sin和cos这样的符号.
应当注意:
单独写出三角函数的符号或cos等是没有意义的.因为它们离开了确定的锐角是无法显示出它的含义;
另一方面,这些符号和角写在一起时(如),它表示的就不再是角,而是一个特定的三角形的两条边的比值了(如).真正理解并掌握这些,才真正掌握了这些符号的含义,才能正确地运用它们.
4.我们应当学会认识任何位置的直角三角形中的一个锐角的正弦、余弦的表达式.
我们不仅应当熟练掌握如图那样的标准位置的直角三角形的正弦、余弦的表达式,而且能熟练地写出无论怎样放置的直角三角形的正弦、余弦的表达式.如,如图所示,若,则有
有的直角三角形隐藏在更复杂的图形中,我们也应能正确地写出所需要的三角函数表达式,如图中,ABCD是梯形,,作,我们应正确地写出如下的三角函数关系式:
很显然,这些表达式提供给我们丰富的边与角间的数量关系.
5.特殊角的正弦、余弦值既容易导出,也便于记忆,应当熟悉掌握它们.
利用勾股定理,很容易求出含有或角的直角三角形三边的比;
如图
(1)和图
(2)所示.
根据定义,有
另一方面,可以想像,当时,边与AC重合(即),所以
当时,边AB与CB重合(即AB=CB),AC的长缩小为0,于是,有
把以上结果可以集中列出下面的表:
6.教法建议
(1)联系实际,提出问题
通过修建扬水站时,要沿斜坡铺设水管而提出要求水管最顶端离地面高度的问题,第一步把这问题归结于直角三角形中,第二步,再把这个问题归于直角三角形中,已知一个锐角和斜边的长,求这个锐角所对直角边的一个几何问题.同时指出在这种情况下,用已学过的勾股定理是解决不了的.激发学生的学习兴趣,调动学生探索新途径,迫切需要学习新知识的积极性.在这章的第一节课,应抓住这个具有教育性,富于启发性的有利开端,为引进本章的重要内容:
锐角三角函数作了十分必要的准备.
(2)动手度量、总结规律、给出定义以含的三角板为例让学生对大小不同的三角板进行度量,并引导学生得出规律:
,再进一步对含的三角板进行度量,在探索同样的内容时,要用到勾股定理,又类似地得到,所有的这种等腰直角三角形中,都会得到,这时,应当即给出的正弦的定义及符号,即,再对照图形,分别用a、b、c表示、、的对边,得出及,就这样非常简洁地得到锐角三角函数的第一个定义,应充分利用课本中这种简练的处理手段,使学生建立起锐角三角函数的概念.
(3)加强数形结合思想的教学
“解直角三角形”编在几何教材中,突出了它的几何特点,但这只是从知识的系统性方面讲的,使它与几何前后知识可关系更紧密,便于学生理解和掌握,并没有改变它形数结合的本质,因此教学中要充分利用这部分教材,帮助学生掌握用代数方法解决几何问题的方法,提高在几何问题中注意运用代数知识的能力.
第一课时
一、教学目标
1.使学生知道当直角三角形的锐角固定时,它的对边、邻边与斜边的比值也都固定这一事实,
数学教案-正弦和余弦
。
2.逐步培养学生观察、比较、分析、概括等逻辑思维能力。
3.引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯。
二、学法引导
1.教学方法:
引导发现和探索研究相结合,尝试成功教法。
2.学生学法:
在教师的指导下,积极思维,相互讨论,动手感知,探索新知。
三、重点、难点、疑点及解决办法
1.重点:
使学生知道当锐角固定时,它的对边、邻边与斜边的比值也是固定的这一事实。
2.难点:
学生很难想到对任意锐角,它的对边、邻边与斜边的比值也是固定的事实,关键在于教师引导学生比较、分析,得出结论。
3.疑点:
无论直角三角形的锐角为何值,它的对边、邻边与斜边的比值总是固定不变的。
4.解决办法:
教师引导学生比较、分析、讨论,解决重难点和疑点。
四、教具准备
自制投影片,一副三角板
五、教学步骤
(一)明确目标
1.如图,长5米的梯子架在高为3米的墙上,则、间距离为多少米?
2.长5米的梯子以倾斜角为30°
靠在墙上,则、间的距离为多少?
3.若长5米的梯子以倾斜角40°
架在墙上,则、间距离为多少?
4.若长5米的梯子靠在墙上,使、间距离为2米,则倾斜角为多少度?
前两个问题学生很容易回答,这两个问题的设计主要是引起学生的回忆,并使学生意识到,本章要用到这些知识,但后两个问题的设计却使学生感到疑惑,这对初三年级这些好奇、好胜的学生来说,起到激起学生的学习兴趣的作用,同时使学生对本章所要学习的内容的特点有一个初步的了解,有些问题单靠勾股定理或含30°
角的直角三角形和等腰直角三角形的知识是不能解决的,解决这类问题,关键在于找到一种新方法,求出一条边或一个未知锐角,只要做到这一点,有关直角三角形的其他未知边角就可用学过的知识全部求出来,
初中数学教案
《数学教案-正弦和余弦》()。
◆分享好文◆
通过四个例子引出课题。
(二)整体感知
1.请每一位同学拿出自己的三角板,分别测量并计算30°
角的对边、邻边与斜边的比值。
学生很快便会回答结果:
无论三角尺大小如何,其比值是一个固定的值,程度较好的学生还会想到,以后在这些特殊直角三角形中,只要知道其中一边长,就可求出其他未知边的长。
2.请同学画一个含40°
角的直角三角形,并测量、计算40°
角的对边、邻边与斜边的比值,学生又高兴地发现,不论三角形大小如何,所求的比值是固定的,大部分学生可能会想到,当锐角取其他固定值时,其对边、邻边与斜边的比值也是固定的吗?
这样做,在培养学生动手能力的同时,也使学生对本节课要研究的知识有了整体感知,唤起学生的求知欲,大胆地探索新知。
(三)教学过程
1.通过动手实验,学生会猜想到“无论直角三角形的锐角为何值,它的对边、邻边与斜边的比值总是固定不变的”,但是怎样证明这个命题呢?
学生这时的思维很活跃,对于这个问题,部分学生可能能解决它,因此教师此时应让学生展开讨论,独立完成。
2.学生经过研究,也许能解决这个问题.若不能解决,教师可适当引导:
若一组直角三角形有一个锐角相等,可以把其顶点,,重合在一起,记作,并使直角边,,……落在同一条直线上,则斜边,,……落在另一条直线上,这样同学们能解决这个问题吗?
引导学生独立证明:
易知,……,∴∽∽∽……,∴,,因此,在这些直角三角形中,的对边、邻边与斜边的比值,是一个固定值。
通过引导,使学生自己独立掌握了重点,达到知识教学目标
,同时培养学生能力,进行了德育渗透。
而前面导课中动手实验的设计,实际上为突破难点而设计。
这一设计同时起到培养学生思维能力的作用。
3.练习:
教科书P3练习。
此题为作了孕伏,同时使学生知道任意锐角的对边与斜边的比值都能求出来。
(四)总结、扩展
1.引导学生作知识总结:
本节课在复习勾股定理及含30°
角直角三角形的性质基础上,通过动手实验、证明,我们发现,只要直角三角形的锐角固定,它的对边、邻边与斜边的比值也是固定的。
教师可适当补充:
本节课经过同学们自己动手实验,大胆猜测和积极思考,我们发现了一个新的结论,相信大家的逻辑思维能力又有所提高,希望大家发扬这种创新精神,变被动学知识为主动发现问题,培养自己的创新意识。
2.扩展:
当锐角为30°
时,它的对边与斜边比值我们知道,今天我们又发现,锐角任意时,它的对边与斜边的比值也是固定的,如果知道这个比值,已知一边求其他未知边的问题就迎刃而解了,看来这个比值很重要,下节课我们就着重研究这个“比值”,有兴趣的同学可以提前预习一下,通过这种扩展,不仅对下、余弦概念有了初步印象,同时又激发了学生的兴趣。
六、布置作业
本节课内容较少,而且是为正、余弦概念打基础的,因此课后应要求学生预习正余弦概念。
七、板书设计