极化作用文档格式.docx

上传人:b****4 文档编号:16055017 上传时间:2022-11-18 格式:DOCX 页数:10 大小:45.73KB
下载 相关 举报
极化作用文档格式.docx_第1页
第1页 / 共10页
极化作用文档格式.docx_第2页
第2页 / 共10页
极化作用文档格式.docx_第3页
第3页 / 共10页
极化作用文档格式.docx_第4页
第4页 / 共10页
极化作用文档格式.docx_第5页
第5页 / 共10页
点击查看更多>>
下载资源
资源描述

极化作用文档格式.docx

《极化作用文档格式.docx》由会员分享,可在线阅读,更多相关《极化作用文档格式.docx(10页珍藏版)》请在冰豆网上搜索。

极化作用文档格式.docx

 

等,才考虑其变形性.):

离子可以被极化的程度。

a.离子的电荷 

随正电荷数的减少或负电荷数的增加,变形性增大。

例如变形性

Si4+<Al3+<Mg2+<Na+<F-<O2-

b.离子的半径 

随半径的增大,变形性增大。

F-<Cl-<Br-<I-;

O2-<S2-

c.离子的外层电子构型外层18,9~17等电子构型的离子变形性较大,具有稀有气体外层电子构型的离子变形性较小。

例如变形性 

K+<Ag+;

Ca2+<Hg2+

d.复杂阴离子变形性小,半径虽大,但离子对称性高,中心氧化数又高,拉电子能力强,不易变形.

综上所述,常见阴离子的变形性大小顺序为

 

ClO4-<F-<NO3-<OH-<CN-<Cl-<Br-<I-

3.相互极化(附加极化):

Al2O3中 

对 

施加电场作用,使 

变形,当然 

也有极化能力,但 

变形性极小,故这部分作用不必考虑;

但若不是8e的 

而是18e或(18+2)e的正离子,不考虑自身的变形性是不行的.现考虑阳离子对阴离子的极化,又考虑阴离子对阳离子的极化,总的结果称相互极化(有时也称为附加极化). ZnI2  CdI2  HgI2 

只考虑 

对I-的极化作用,应得ZnI2的极化程度最大的结果,因为 

的半径最小.即ZnI2的熔点、沸点低,而HgI2的熔点、沸点高.但这与实验结果是不相符的.原因在于没有考虑的变形性,没有考虑相互极化. 

的变形性最小, 

的变形性最大.故相互极化的总结果是HgI2最严重.

所以,ZnI2,CdI2,HgI2的熔点.和溶解度S依次降低.因而,在遇到阳离子为 

等时,要注意用相互极化解释问题.

有个规律,阳离子所含d电子越多,电子层数越多,这种附加极化作用一般也越大。

4.反极化作用

NO3-中心的N(V),极化作用很强,使氧的电子变形。

HNO3分子中,由于H+的极化能力极强,它使NO3-中邻近H+的氧原子的极化与N(V)的作用相反我们称H+的极化作用为反极化作用,意思是与N(V)的效果相反.这种反极化作用导致O-N键结合力减弱.所以,酸在较低的温度下将分解.。

Li+的离子极化能力小于H+,但是强于Na+,故稳定性关系有HNO3<LiNO3<NaNO3

一般含氧酸的盐比含氧酸稳定.H2SO3,H2S2O3等得不到纯品,但其盐Na2SO3,Na2S2O3是比较稳定的.以上从阳离子的反极化能力考虑问题.若阳离子相同,则化合物的稳定取决于中心的极化能力或说抵抗反极化的能力

  例如:

AgNO3444℃分解AgNO2140℃分解

N(V)的极化能力比N(III)的极化能力强,或者说抵抗H+,Na+等阳离子的反极化能力强.故高价含氧酸及其盐比低价含氧酸及其盐(同一中心)稳定.

5.离子极化对化合物的性质有很大影响

1.使化合物的熔点降低

  由于离子极化,使化学键由离子键向共价键转变,化合物也相应由离子型向共价型过渡,其熔点、沸点也随共价成分的增多而降低。

如AgF<AgCl<AgBr<AgI

2.使化合物的溶解度降低

  离子晶体通常是可溶于水的。

水的介电常数很大(约等于80),它会削弱正、负离子之间的静电吸引,离子晶体进入水中后,正、负离子间的吸引力将减到约为原来的八十分之一,这样使正、负离子很容易受热运动的作用而互相分离。

由于离子极化,离子的电子云相互重叠,正、负离子靠近,离子键向共价键过渡的程度较大,即键的极性减小。

水不能像减弱离子间的静电作用那样减弱共价键的结合力,所以导致离子极化作用较强的晶体难溶于水。

如AgFAgClAgBrAgI,由于极性降低,溶解度依次降低。

3.使化合物的稳定性下降(分解温度降低)

  随着离子极化作用的加强,负离子的电子云变形,强烈地向正离子靠近,有可能使正离子的价电子失而复得,又恢复成原子或单质,导致该化合物分解。

如碱土金属碳酸盐,从BeCO3到BaCO3,热稳定性增大。

4.使化合物的颜色加深

  离子极化作用使外层电子变形,价电子活动范围加大,与核结合松弛,有可能吸收部分可见光而使化合物的颜色变深。

例如,S2-变形性比O2-大,因此硫化物颜色比氧化物深。

而且副族离子的硫化物一般都有颜色,而主族金属硫化物一般都无颜色,这是因为主族金属离子的极化作用都比较弱。

又如AgClAgBrAgI,颜色依次为白色,淡黄色,黄色。

离子极化理论  离子极化理论是离子键理论的重要补充。

离子极化理论认为:

离子化合物中除了起主要作用的静电引力之外,诱导力起着很重要的作用。

离子本身带电荷,阴、阳离子接近时,在相反电场的影响下,电子云变形,正、负电荷重心不再重合,产生诱导偶极,导致离子极化,致使物质在结构和性质上发生相应的变化。

  一、离子的极化作用和变形性

  离子极化作用的大小决定于离子的极化力和变形性。

离子使异号离子极化而变形的作用称为该离子的“极化作用”;

被异号离子极化而发生离子电子云变形的性能称为该离子的“变形性”。

虽然异号离子之间都可以使对方极化,但因阳离子具有多余的正电荷,半径较小,在外壳上缺少电子,它对相邻的阴离子起诱导作用显著;

而阴离子则因半径较大,在外壳上有较多的电子容易变形,容易被诱导产生诱导偶极。

所以,对阳离子来说,极化作用应占主要地位,而对阴离子来说,变形性应占主要地位。

  1.影响离子极化作用的主要因素

  

(1)离子壳层的电子构型相同,半径相近,电荷高的阳离子有较强的极化作用。

例如:

Al3+>

Mg2+>

Na+

  

(2)半径相近,电荷相等,对于不同电子构型的阳离子,其极化作用大小顺序如下:

  

18电子和18+2电子

  构型以及氦型离子。

  如:

Ag+、Pb2+、Li+等

  >

9—17电子构型的离子。

如:

Fe2+、Ni2+、Cr3+等

离子壳层为8电子

  构型的离子。

Na+、Ca2+、Mg2+等

  (3)离子的构型相同,电荷相等,半径越小,离子的极化作用越大。

  但由于阳离子半径相互差别不大,所以,阳离子的电荷数越大,极化力越大。

为了衡量阳离子极化力,曾有许多人将正电荷数和半径综合起来找出统一的标度。

例如,卡特雷奇(G·

Cartledge)以离子势φ=Z/r为标度;

徐光宪以静电势能Z2/r为标度…等等。

这些都是经验公式,由于影响极化作用的因素较多,所以这些公式不能对所有离子都适用,还有许多例外。

  2.影响离子变形性的主要因素

  

(1)离子的电子层构型相同,正电荷越高的阳离子变形性越小。

  O2->

F->

Ne>

Al3+>

Si4+

  

(2)离子的电子层构型相同,半径越大,变形性越大。

  F-<

Cl-<

Br-<

I-

  (3)若半径相近,电荷相等,18电子层构型和不规则(9—17电子)构型的离子,其变形性大于8电子构型离子的变形性。

  Ag+>

K+;

Hg2+>

Ca2+

  (4)复杂阴离子的变形性通常不大,而且复杂阴离子中心原子氧化数越高,其变形性越小。

  ClO4-<

F-<

NO3-<

H2O<

OH-<

CN-<

  SO42-<

CO32-<

O2-<

S2-

  从上面的影响因素看出,最容易变形的离子是体积大的阴离子(如I-、S2-等)和18电子层或不规则电子层的少电荷的阳离子(如:

Ag、Hg2+等)。

最不容易变形的离子是半径小,电荷高,8电子构型的阳离子(如:

Be2+、Al3+、Si4+等)。

  对于阴离子的变形性也可用离子势的倒数1/φ来表征,即=。

当然,这个公式也只对某些简单阴离子适合。

  二、离子的附加极化

  在上面的讨论中,偏重于阳离子对阴离子的极化作用。

但是,当阳离子也容易变形时,阴离子对阳离子也会产生极化。

两种离子相互极化,产生附加极化效应,加大了离子间引力,因而会影响离子间引力所决定的许多化合物性质。

  1.18电子层或不规则电子层构型的阳离子容易变形,可产生附加极化作用。

  2.同一族,从上到下,18电子层构型的离子附加极化作用递增。

在锌、镉、汞的碘化物中总极化作用依Zn2+<

Cd2+<

Hg2+顺序增大。

  3.在18电子层构型阳离子的化合物中,阴离子变形性越大,附加极化作用越强。

  三、离子极化对化合物性质的影响

  离子极化理论对于由典型离子键向典型共价键过渡的一些过渡型化合物的性质可以作出比较好的解释。

下面举例谈一下离子极化对化合物性质的影响。

  1.影响离子晶格变形

  在典型的离子化合物中,可以根据离子半径比规则确定离子晶格类型。

但是,如果阴、阳离子之间有强烈的相互极化作用,晶格类型就会偏离离子半径比规则。

在AB型化合物中,离子间相互极化的结果缩短了离子间的距离,往往也减小了晶体的配位数。

晶型将依下列顺序发生改变:

  CsCl型NaCl型ZnS型分子晶体

  相互极化作用递增,晶型的配位数递减.

  例如:

AgCl、AgBr和AgI,按离子半径比规则计算,它们的晶体都应该属于NaCl型晶格(配位数为6)。

但是,AgI却由于离子间很强的附加极化作用,促使离子强烈靠近,结果AgI以ZnS型晶格存在。

  2.影响离子晶体熔点、沸点下降

  由于离子极化作用加强,化学键型发生变化,使离子键逐渐向极性共价键过渡。

导致晶格能降低。

AgCl与NaCl同属于NaCl型晶体,但Ag离子的极化力和变形性远大于Na离子,所以,AgCl的键型为过渡型,晶格能小于NaCl的晶格能。

因而AgCl的熔点(455℃)远远低于NaCl的熔点(800℃)。

  3.化合物的颜色加深

  影响化合物颜色的因素很多,其中离子极化作用是一个重大的影响。

在化合物中,阴、阳离子相互极化的结果,使电子能级改变,致使激发态和基态间的能量差变小。

所以,只要吸收可见光部分的能量即可引起激发,从而呈现颜色。

极化作用愈强,激发态和基态能量差愈小,化合物的颜色就愈深。

Hg2+

Pb2+

Bi3+

Ni2+

Cl

黄褐

Br

I-

  4.在极性溶剂中溶解度下降

  物质的溶解度是一个复杂的问题,它与晶格能、水化能、键能等

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 法律文书 > 辩护词

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1