硅氧烷的水解缩聚反应动力学Word下载.docx

上传人:b****3 文档编号:15992438 上传时间:2022-11-17 格式:DOCX 页数:9 大小:24.62KB
下载 相关 举报
硅氧烷的水解缩聚反应动力学Word下载.docx_第1页
第1页 / 共9页
硅氧烷的水解缩聚反应动力学Word下载.docx_第2页
第2页 / 共9页
硅氧烷的水解缩聚反应动力学Word下载.docx_第3页
第3页 / 共9页
硅氧烷的水解缩聚反应动力学Word下载.docx_第4页
第4页 / 共9页
硅氧烷的水解缩聚反应动力学Word下载.docx_第5页
第5页 / 共9页
点击查看更多>>
下载资源
资源描述

硅氧烷的水解缩聚反应动力学Word下载.docx

《硅氧烷的水解缩聚反应动力学Word下载.docx》由会员分享,可在线阅读,更多相关《硅氧烷的水解缩聚反应动力学Word下载.docx(9页珍藏版)》请在冰豆网上搜索。

硅氧烷的水解缩聚反应动力学Word下载.docx

关键词:

硅氧烷;

水解;

缩聚;

反应动力学

硅氧烷的应用相当广泛,通常作为交联剂、偶联剂、粘接促进剂等用于陶瓷、催化剂制备、光学器件制

备、光学器件表面改性[1~3]。

关于硅氧烷水解与缩聚反应的研究经历了两个阶段:

经验性的定性研究和

更加本质的定量研究。

硅氧烷水解与缩聚反应动力学的研究对于硅氧烷工业化应用、反应过程的设计、反应装置的安全性很有意义。

1硅氧烷的水解动力学

20世纪80年代以前,由于检测技术的欠缺,研究停留在经验性的定性研究上

[3]。

80年代中后期以后,研究者们运用13CNMR及29SiNMR直接检测低浓度的中间产物,为反应动力学的定量研究提供重要

手段[3]。

11硅氧烷的基团对硅氧烷水解动力学的影响

R3SiOR单硅氧烷体系的水解和缩聚反应较简单,可简化动力学分析,为常见的研究对象[4]。

而RnSi(OR4-n(0n<

3多硅氧烷体系的水解过程存在多步、逐步的特性,不同学者对多硅氧烷水解反应速率的变化趋势的研究结果不一。

Keefer等[5]认为:

OH基团的吸电性比OR更强,水解导致Si原子上其它OR基团的电荷密度下降,则

Si原子上的OH越多,其上的OR基团反应活性越低,因此Si(OR4的4个烷氧基团水解速率依次减小,因而水解多不完全,导致低度支化SiOSi网络的形成。

该假设得到了一些研究者的认同

[6,7]。

Kay等[6]

采用统计学模型,假设四甲氧基硅烷(TMOS上各官能团在水解反应中是等活性而又相互独立的,忽略反应的可逆性,发现TMOS的水解速率常数随OR基团的减少线性递减。

Ro等[7]采用类似的模型,发

现四乙氧基硅烷(TEOS的各步水解反应速率常数逐渐减小,逆反应速率常数逐渐增大。

McNeil等

[8]发现C6H5Si(OR3的水解速率逐步增大。

杨辉等[9]和Pouxviel等[10]的研究显示,TEOS水解反应速率常数逐步增大,其中杨辉等认为水解反应不可逆,而Pouxviel等则认为水解反应可逆。

在Sanchez等[11]的研究中,TEOS和TMOS的第一、第二步水解不可逆,随后的水解步骤中,反应的可逆性逐

步增强,正、逆反应的速率常数均逐步增大。

水解速率常数逐递增大,表明水合质子对烷氧基团的亲电进攻并非反应动力学的控制因素[11]。

Sanchez等[11]的研究认为反应按双分子亲核取代机理(SN2进行:

先是烷氧基团的快速质子化,然后是H2O对Si原子慢速的亲核进攻(反应控制步骤,最后是醇的消去反应。

当Si(OR4的水解反应按SN2机理进行时,基团对反应进程的影响主要有两个方面:

电荷感应效应和空间位阻效应。

从电荷感应效应来看,由于OH基团的吸电性比OR强,随着Si原子上OH基团的增

31第11期高分子通报

加,Si原子上的电荷密度下降,令其更容易接受水分子的进攻;

从空间位阻效应来看,因为亲核进攻总是从离去基团的相反方向进行,基团OH比OR的空间位阻更小,更有利于亲核进攻;

从消去基团来看,OR不易从Si原子上消去,而O+RH基团易于消去,所以反应进程加快[11]。

硅氧烷上的有机基团是影响水解动力学的一个重要因素。

基团对反应的影响往往是电荷感应效应和空间位阻效应两方面共同作用的结果,如一些研究表明甲基基团能加速水解反应[12,13],有时其中某一方面的效应可能居主导地位。

根据SN2反应机理,烷基上的吸电子取代基团有利于水解反应的进行。

若烷基上的吸电性增强,则反应速率应明显增大,如氯甲基和正丙基的空间体积相近,而ClCH2Si(OCH2CH2OCH33的水解速率是C3H7Si(OCH2CH2OCH33的1600倍[3],表明在该反应体系中,电荷感应效应占主导地位。

从电荷感应效应出发,六烷氧基二聚硅氧烷(HEODS的Si原子上的反应活性应比TEOS更高,研究结果却表明其活性更低[11],则是由空间位阻效应所致。

刘瑞丽等[14]发现TEOS、MTEOS(甲基三乙氧基硅烷、DMDEOS(二甲基二乙氧基硅烷在碱性条件下的初步水解速率依次增大,表明在该反应体系中,空间位阻效应对反应活性的影响占主导。

12硅氧烷水解反应催化剂对硅氧烷水解动力学的影响

常用的硅氧烷水解催化剂主要有酸和碱。

TEOS水解速率常数随着水解程度的提高及酸浓度的增大而增大

[10,11,15,16],水解活化能为11~16kcalmol[7,11]。

Sanchez等[11]的研究表明:

酸性条件下([HCl]110-3M,TEOS水解平衡常数并不随水解程度的提高而明显改变;

Sefck等[17]认为酸的浓度([HCl]110-2M对水解平衡常数的影响也不明显。

理论上,当酸的浓度很高时,硅烷醇的质子化及硅正离子的生成可能导致水解平衡常数的改变;

但当酸的浓度达到中等([HCl]=110-2M时,硅正离子浓度并不显

著[17]。

碱比酸更能促进TEOS的水解平衡,如[NH3]=056molL时,几乎观测不到再酯化反应

[18]。

在碱催化下,水解平衡分布的改变可能和硅醇的去质子化反应相关。

例如在TEOS第一步水解之后,由于硅醇的去质子化反应,即使水解平衡常数不变,水解反应程度却增加[23]。

一些研究表明TEOS的水解速率常

数随碱浓度的增大而增大[18~22]。

在TEOS浓度较高的碱催化体系中,硅醇去质子化反应的干扰作用可能

会导致水解反应方程偏离[TEOS]和[H2O]的1级反应[23]。

刘瑞丽等[14]所得TEOS完全水解的反应活化能约为25kJmol。

催化剂甚至会对反应的机理产生影响。

Osterholtz等[3]将酸催化和碱催化的速率常数用修正的Taft

方程拟合,发现碱性条件下,空间因子*、电荷分布因子s的值越大则反应机理越倾向于具有5配位中间

体的两步反应机理;

而酸性条件下,p*、s的值越小则反应机理越倾向于SN2反应机理。

13硅氧烷水解反应的水解拟平衡假设

实际上,对研究的反应体系所采用的模型和所做的假设,往往对研究结果有显著的影响

[5~7,9~11,24]。

为了更好地建立水解动力学模型,Rankin等[23]提出了水解拟平衡假设:

当正、逆水解反应的速率均远超过

缩聚反应速率、硅i醇的水解转化率达到一个常值、而硅i+1醇的浓度不显著,则可以认为反应达到水解拟平衡,在该体系中,水和醇的浓度快速达到稳定。

他们比较了水解拟平衡条件与真实平衡条件下的水解平衡常数,发现三甲基乙氧基硅烷(TMEOS的计算结果落在真实水解平衡常数[4]

的值区间内。

Rankin等[25]还对模型中反应物主要成分的灵敏度进行矩阵分析,证明水解拟平衡对于TMEOS的水解缩

聚反应的适用性,并且提出水解拟平衡的使用准则:

(1第i步水解速率常数须比该水解产物的缩合反应常数至少大一个数量级;

(2硅i醇的水解程度与硅(i+1醇浓度之比在相图中快速达到平衡。

2硅氧烷的缩聚反应动力学

21单组分的硅氧烷缩聚反应动力学

211硅氧烷的缩聚反应研究硅氧烷的缩聚反应是生成硅氧聚合物骨架的基础,也是硅氧烷聚合物

工业应用的前提。

因此,人们在此领域进行了大量的研究[3,26~28]。

[29],,

32高分子通报2006年11月

并计算了聚合物分子量分布及其他性质。

Nishiyama等[30]研究了甲基丙烯酸基丙基三甲氧基硅烷的水

解和缩聚反应,得到水解程度不同的水解产物及各种缩聚产物的详细谱图,Savard等

[26]则发现该硅烷在

水溶液中主要的缩聚产物为环状的三聚物或四聚物。

Sefck等[4]研究了三甲基硅醇的酯化、缩合、去质子化反应,得到了硅醇在酸性条件下的酯化反应平衡常数、去质子化反应平衡常数,发现了29SiNMR化学位

移与三甲基硅醇去质子化反应程度之间有较好的线性关联。

Devreux等[27]研究了VTES(乙烯基三乙氧基硅烷、MTEOS、TEOS水解后的缩聚反应,而Vainrub等[31]则通过数学拟合得到这些硅氧烷的各种可能的缩聚反应速率常数,发现空间位阻效应导致SiOH之间的

缩聚反应与随机聚合反应不同。

Rankin等[25]研究了系列烷基硅氧烷的缩聚反应,发现甲基取代程度越

高,缩聚速率越快,而乙基取代程度越高,缩聚速率下降;

并且在相同的取代度下,随着硅氧烷水解程度提高,缩聚速率下降。

212硅氧烷缩聚催化剂的影响Assink等[32]的研究表明,在酸催化的TEOS反应系统中,不可逆的水

缩合反应占据了主要地位。

TEOS在水不足量而酸浓度不高的条件下水解,水被完全消耗,并且部分水解产物的分布迅速达到平衡,许多研究都只考虑水缩合反应,而忽略其逆反应

[10,16,32,33]。

而TMOS水解产物的缩聚反应既有水缩合反应也有醇缩合反应[6],并且都是可逆的[34]。

在酸浓度高的情况下,TMOS水

解产物的二缩聚反应快速达到平衡;

而酸浓度低时,尽管二缩聚的反应速率降低,缩聚产物分解不如前者明显[34]。

Sefck等[17]发现生成水的二缩聚反应速率常数随[HCl]的增大而增大,酸性体系正硅醇的二缩聚反应平衡常数K=40;

在酸浓度很低或碱性溶液中,由于沉淀的影响,不易观测到TEOS水解产物的二缩聚反应。

而在碱性和中性的水溶液中,硅醇的缩聚反应是可逆的,中性含水体系K=20;

在碱浓度高的体系中,TEOS水解产物的二缩聚反应速率很快,并且缩聚反应过程中伴随着硅酸去质子化反应,加入碱倾向于使二缩聚平衡向单体移动;

碱对缩聚反应程度的改变可以理解为其改变了去质子化反应平衡,因

其改变了单体和二聚物之间的平衡分布[17]。

213硅氧烷的缩聚

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 党团工作 > 思想汇报心得体会

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1