短路电流热效应和电动力效应的实用计算教程文件Word下载.docx

上传人:b****3 文档编号:15968775 上传时间:2022-11-17 格式:DOCX 页数:32 大小:294.83KB
下载 相关 举报
短路电流热效应和电动力效应的实用计算教程文件Word下载.docx_第1页
第1页 / 共32页
短路电流热效应和电动力效应的实用计算教程文件Word下载.docx_第2页
第2页 / 共32页
短路电流热效应和电动力效应的实用计算教程文件Word下载.docx_第3页
第3页 / 共32页
短路电流热效应和电动力效应的实用计算教程文件Word下载.docx_第4页
第4页 / 共32页
短路电流热效应和电动力效应的实用计算教程文件Word下载.docx_第5页
第5页 / 共32页
点击查看更多>>
下载资源
资源描述

短路电流热效应和电动力效应的实用计算教程文件Word下载.docx

《短路电流热效应和电动力效应的实用计算教程文件Word下载.docx》由会员分享,可在线阅读,更多相关《短路电流热效应和电动力效应的实用计算教程文件Word下载.docx(32页珍藏版)》请在冰豆网上搜索。

短路电流热效应和电动力效应的实用计算教程文件Word下载.docx

两个载流导体中的电流方向相反

时,其电动力为相互排斥。

4.两相短路时平行导体间的最大电动力

发生两相短路时,平行导体之间的最大电动力F

(2)(N):

直(N)

卢)

k—两相短路冲击电流,(A)。

5.三相短路时平行导体之间的最大电动力

发生三相短路时,每相导体所承受的电动力等于该相导体与其它两相之间电动力的矢量和。

三相导体水平布

置时,由于各相导体所通过的电流不同,所以边缘相与中间相所承受的电动力也不相同。

边缘相u相与中间相v相导体所承受的最大电动力‘-一、'

分别为:

•厘(N)

朴冷汕(N)

计算三相短路时的最大电动力时,

发生三相短路后,母线为三相水平布置时中间相导体所承受的电动力最大。

应按中间相导体所承受的电动力计算。

6.短路电流电动力效验

当系统中同一处发生三相或两相短路时,短路处三相冲击短路电流与两相冲击短路电流之比为:

「厂。

-■'

'

---'

,即电力系统中同一地点发生不同种类的短路时,导体所承受三相短路时的最大电动力比两

相短路时的最大电动力大15%。

因此,在校验导体的最大电动力时,按三相短路的最严重情况考虑。

二、短路电流的热效应

1•电气设备的功率损耗包括:

导体与导体之间接触电阻上产生的损耗,导体自身电阻上产生的损耗;

绝缘材

料在电场作用下产生的介质损耗等等。

电气设备在工作过程中,由于自身功率损耗会引起电气设备的发热。

2.导体发热分为长期发热和短路时发热:

长期发热:

是指正常工作电流在较长时间内所引起的发热。

短路时发热:

是指短路电流在极短的时间内所引起的发热。

3.电气设备温度升高的影响:

影响电气设备的绝缘:

绝缘材料在高温和电场的作用下会逐渐老化,温度愈高绝缘的老化速度愈快。

温度超

过规定的允许温度时,会使电气设备的使用年限缩短。

影响接触电阻值:

当导体温度过高时,导体表面的氧化速度加快,造成接触电阻增大,引起自身功率损耗加

大,进一步导致导体温度再升高,又引起接触电阻再增大,如此恶性循环下去,会使接头熔化,造成严重事故。

降低机械强度:

金属材料在使用温度超过一定数值之后,其机械强度会显著降低。

如果电气设备的使用温度

过高,可能会使电气元件的机械强度降低,影响电器的安全运行。

4.载流导体和电器发热的允许温度:

为了限制电气设备因发热而产生不利影响,保证电气设备的正确使用,国家规定了载流导体和电器长期发热

和短路时发热的允许温度:

导体种类和材料

长期工作发热

短路时发热

允许温度

(C)

允许温升

70

45

300

230

200

130

裸母线

钢(不和电器直接连接

时)

400

330

钢(和电器直接连接时)

铜芯10V及以下

60〜80

250

190〜170

油浸纸绝缘

铝芯10V及以下

140〜120

电缆

铜芯20〜30kV

50

175

125

充油纸绝缘60〜330kV

70〜75

160

90〜85

绝缘电缆

橡皮绝缘电缆

150

100

聚乙烯绝缘电缆

60

交联聚乙烯

铜芯

80

铝芯

120

有中间接头

锡焊接头

的电缆

压接接头

5.导体温度的变化特点

均匀导体(材料相同、截面相等)无电流通过时,其温度与周围环境温度相同。

当有工作电流通过时,导体所产生的热量一部分用于导体温度升高,另一部分则会散布到导体周围的介质中去。

导体在不断产生热量的同时,也不断地向周围介质散发热量,当导体所产生的热量与散发的热量相等时,导体温度将会稳定到某一数值。

工作电流所产生的热量引起导体温度的变化:

如下图中曲线AB段所示。

图中-为导体周围介质温度,八为

导体通过工作电流时的稳定温度。

稳定温度二与导体周围介质温度:

-的高低以及通过电流的大小有关。

短路时导体温度变化:

如下图中曲线BC段所示。

I为短路时的最高温度。

短路电流被切除之后,导体温度

会逐渐地降至周围环境温度’」,其温度变化如下图中曲线C点后的虚线所示。

当短路电流通过导体时,由于短路电流值较正常工作电流大许多倍而且通过的时间很短,所以短路电流所产生的热量几乎全部用于导体温度的升高。

导体温度变化曲线

6.短路时最高发热温度计算

在实用计算中,导体短路时的最高温度可以根据”-%关系曲线进行计算。

图中横坐标为A值,纵坐标为F值。

当导体材料的温度-值确定之后,从图可直接查到所对应的A值。

反之,已知A值时也可从曲线中找到对应的之

导体'

・;

曲线图

计算导体短路时的最高温度二的步骤如下:

(1)根据运行温度t从曲线中查出■之值;

(2)计算出匕;

然后再根据,从图14-3曲线中查出'

之值。

(14-5)

4

(J/Q.m)

2

S—导体截面积,(m);

〕一短路时的热状态值,(J/Q.m4);

「一初始温度为所对应的热状态值,(J/Q.m4)。

二称为短路电流的热效应,它与短路电流产生的热量成比,即,;

,(A2.s)

7.短路电流的热效应计算

短路电流发热的等值时间:

假定稳态短路电流'

-通过导体在时间】内所产生的热量与实际短路电流匚通

过导体在时间.内所产生的热量相等,则称时间‘卜为短路电流发热的等值时间。

如果用图形表示,在图14-4中曲

边梯形ABCDOE的面积应与矩形EF-GO的面积相等。

工程计算中采用等值时间法。

 

IK=f(t)曲线

等值时间法:

根据短路电流Ik随时间变化规律绘制出*;

•■;

关系曲线,如图14-4所示。

当短路电

Q厂器严+10必十劇

(kA.s)

丁一次暂态短路电流周期分量的有效值,(kA);

飞—td/2时刻短路电流周期分量的有效值,(kA);

J—td时刻短路电流周期分量的有效值,(kA);

丄一短路热效应的计算时间(s),,其中是继电保护动作时间,匚是断路器分闸时间。

短路电流非周期分量的热效应、

-可用下列公式进行计算:

-匸(kA2.s)

T—非周期分量等效时间,与短路点及短路时间td有关。

短路点

T(s)

tdW0.1s

td>

0.1s

0.15

0.2

发电机出口及母线

发电机升高电压母线及出线发电机电压电抗器后

0.08

0.1

变电站各级电压母线

0.05

14.2电气设备选择的一般要求+--

熟悉电气设备选择的一般原则和技术条件。

重点:

设备选择的技术条件。

短路稳定条件校验。

一、一般原则

(1)应满足正常运行、检修、短路和过电压情况下的要求并考虑远景发展;

(2)应按当地环境条件校核;

(3)应力求技术先进和经济合理;

(4)与整个工程的建设标准应协调一致;

(5)同类设备应尽量减少品种;

(6)选用的新产品均应具有可靠的试验数据,并经正式鉴定合格。

在特殊情况下,选用未经正式鉴定的新产品时,应经上级部门批准。

、技术条件

选择的高压电气设备,应能在长期工作条件下和发生过电压、过电流的情况下保持正常运行。

各种高压电器的一般技术条件:

序号

电器名称

额定电

压(kV)

额定电流(A)

额定容量

(kVA)

机械何载

(N)

额定开断电流(kA)

短路稳定

热稳定

动稳定

1

高压断路器

V

V|

21

隔离开关

31

负何开关

4!

熔断器

51

电压互感器

6

电流互感器

7」

限流电抗器

8

消弧线圈

9

避雷器

10

穿墙套管

11

绝缘子

V①

注:

悬式绝缘子不校验

1.长期工作条件

电压:

选用的电器允许最高工作电压Umax不得低于该回路电网的最高运行电压UNsma,即:

Unax>

UlSmax

Imax,即:

三相交流3kV及以上电气设备的最高电压(kV):

设备额定电压

3

35

63

110

220

500

设备最高电压

3.5

6.9

11.5

40.5

69

126

252

363

550

电流:

选用的电器额定电流In不得低于所在回路在各种可能运行方式下的最大持续工作电流

INAImax

机械荷载:

所选电器端子的允许荷载,应大于电器引线在正常运行和短路时的最大作用力。

2.短路稳定条件

校验的一般原则:

电气设备在选定后应按可能通过的最大短路电流进行动、热稳定校验。

校验的短路电流一般取三相短路时短路电流,若发电机出口的两相短路,或中性点直接接地系统及自耦变压器等回路中的

单相、两相接地短路较三相短路严重时,则应按严重情况校验。

用熔断器保护的电气设备可不验算热稳定。

当熔断器有限流作用时,可不验算动稳定。

用熔断器保护的电压互感器回路,可不验算动、热稳定。

短路的热稳定条件:

Q—在计算时间td秒内,短路电流的热效应(kA2•s);

It-1秒内电气设备允许通过的热稳定电流有效值(kA);

t—电气设备允许通过的热稳定电流时间(s)。

短路的动稳定条件:

咕沁1

1es疋4一

ik—短路冲击电流峰值(kA);

Ik—短路全电流有效值(k

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 法律文书 > 调解书

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1