中考超凡押题江西省中考数学真题试题含答案Word格式文档下载.docx

上传人:b****5 文档编号:15777543 上传时间:2022-11-16 格式:DOCX 页数:16 大小:274.80KB
下载 相关 举报
中考超凡押题江西省中考数学真题试题含答案Word格式文档下载.docx_第1页
第1页 / 共16页
中考超凡押题江西省中考数学真题试题含答案Word格式文档下载.docx_第2页
第2页 / 共16页
中考超凡押题江西省中考数学真题试题含答案Word格式文档下载.docx_第3页
第3页 / 共16页
中考超凡押题江西省中考数学真题试题含答案Word格式文档下载.docx_第4页
第4页 / 共16页
中考超凡押题江西省中考数学真题试题含答案Word格式文档下载.docx_第5页
第5页 / 共16页
点击查看更多>>
下载资源
资源描述

中考超凡押题江西省中考数学真题试题含答案Word格式文档下载.docx

《中考超凡押题江西省中考数学真题试题含答案Word格式文档下载.docx》由会员分享,可在线阅读,更多相关《中考超凡押题江西省中考数学真题试题含答案Word格式文档下载.docx(16页珍藏版)》请在冰豆网上搜索。

中考超凡押题江西省中考数学真题试题含答案Word格式文档下载.docx

6.如图,在正方形网格中,每个小正方形的边长均相等,网格中三个多边形(分别标记为

)的顶点都在网格上,被一个多边形覆盖的网格线中,竖直部分线段长度之和为,水平部分线段长度之和为,则这三个多边形满足的是().

A.只有

B.只有

C.

D.

【答案】C.

二、填空题(本大题共6小题,每小题3分,共18分)

7.计算:

-3+2=_______.

【答案】-1.

8.分解因式________.

【答案】.

9.如图所示,中,绕点A按顺时针方向旋转50°

,得到,则∠的度数是________.

第9题第10题第11题

【答案】17°

.

10.如图所示,在,过点D作AD的垂线,交AB于点E,交CB的延长线于点F,则∠BEF的度数为_______.

【答案】50°

11.如图,直线于点P,且与反比例函数及的图象分别交于点A,B,连接OA,OB,已知的面积为2,则______.

【答案】4.

12.如图,是一张长方形纸片ABCD,已知AB=8,AD=7,E为AB上一点,AE=5,现要剪下一张等腰三角形纸片(AEP),使点P落在长方形ABCD的某一条边上,则等腰三角形AEP的底边长是_______.

【答案】5,5,.如下图所示:

三、(本大题共5小题,每小题6分,共30分)

13.(本题共2小题,每小题3分)

(1)解方程组

【解析】由

得:

,代入

,解得把代入

∴原方程组的解是.

(2)如图,Rt中,∠ACB=90°

,将Rt向下翻折,使点A与点

C重合,折痕为DE,求证:

DE∥BC.

【解析】由折叠知:

,∴∠∠,

又点A与点C重合,∴∠,

∴∠∠,

∴∠,

∵∠,∴∠,

∴∠,

∴DE∥BC.

14.先化简,再求值:

+)÷

其中.

【解析】原式=+)

=+)

=-

=

把代入得:

原式=.

15.如图,过点A(2,0)的两条直线分别交轴于B,C,其中点B在原点上方,点C在原点下方,已知AB=.

(1)求点B的坐标;

(2)若

【解析】

(1)在Rt,

∴点B的坐标是(0,3).

(2)∵

∴∴∴

设,把(2,0),代入得:

∴∴的解析式是.

16.为了了解家长关注孩子成长方面的情况,学校开展了针对学生家长的“你最关注孩子哪方面成长”的主题调查,调查设置了“健康安全”,“日常学习”,“习惯养成”,“情感品质”四个项目,并随机抽取甲,乙两班共100位学生家长进行调查,根据调查结果,绘制了如下不完整的条形统计图.

(1)补全条形统计图;

(2)若全校共有3600位家长,据此估计,有多少位家长最关心孩子“情感品质”方面的成长?

(3)综合以上主题调查结果,结合自身现状,你更希望得到以上四个项目中哪方面的关注和

指导?

【解析】

(1)如下图所示:

(2)(4+6)÷

100×

3600=360

∴约有360位家长最关心孩子“情感品质”方面的成长.

(3)没有确定答案,说的有道理即可.

17.如图,六个完全相同的小长方形拼成一个大长方形,AB是其中一个小长方形的对角线,请在大长方形中完成下列画图,要求:

仅用无刻度直尺,

保留必要的画图痕迹.

(1)在图

(1)中画一个45°

角,使点A或点B是这个角的顶点,且AB为这个角的一边;

(2)在图

(2)中画出线段AB的垂直平分线.

【解析】如图所示:

(1)∠BAC=45º

(2)OH是AB的垂直平分线.

四、(本大题共4

小题,每小题8分,共32分)

18.如图,AB是⊙O的直径,点P是弦AC上一动点(不与A、C重合),过点P作PE⊥AB,垂足为E,

射线EP交于点F,交过点C的切线于点D.

(1)求证DC=DP

(2)若∠CAB=30°

,当F是的中点时,判断以A、O、C、F为顶点的四边形是什么特殊四边形?

说明理由;

【解析】 

(1)如图1

连接OC,∵CD是⊙O的切线,

∴OC⊥CD∴∠OCD=90º

∴∠DCA=90º

-∠OCA.

又PE⊥AB,点D在EP的延长线上,

∴∠DEA=90º

∴∠DPC=∠APE=90º

-∠OAC.

∵OA=OC,∴∠OCA=∠OAC.

∴∠DCA=∠DPC,

∴DC=DP.

(2)如图2四边形AOCF是菱形.图1

连接CF、AF,∵F是的中点,∴

∴AF=FC.

∵∠BAC=30º

,∴=60º

又AB是⊙O的直径,∴=120º

∴=60º

∴∠ACF=∠FAC=30º

.

∵OA=OC,∴∠OCA=∠BAC=30º

图2

∴⊿OAC≌⊿FAC(ASA),∴AF=OA,

∴AF=FC=OC=OA,∴四边形AOCF是菱形.

19.如图是一根可伸缩的鱼竿,鱼竿是用10节大小不同的空心套管连接而成,闲置时鱼竿可收缩,完全收缩后,鱼竿的长度的长度即为第1节套管的长度(如图1所示),使用时,可将鱼竿的每一节套管都完全拉伸(如图2所示),图3是这根鱼竿所有套管都处于完全拉伸状态下的平面示意图,已知第1节套管长50cm,第2节套管长46cm,以此类推,每一节套管都比前一节套管少4cm,完全拉伸时,为了使相邻两节套管连接并固定,每相邻两节套管间均有相同长度的重叠,设其长度为cm.

(1)请直接写出第5节套管的长度;

(2)当这根鱼竿完全拉伸时,其长度为311cm,求的值.

图3

【解析】

(1)第5节的套管的长是34cm.(注:

50-(5-1)×

4)

(2)(50+46+…+14)-9x=311

∴320-9x=311,∴x=1

∴x的值是1.

20.甲、乙两人利用扑克牌玩“10点”游戏,游戏规则如下:

将牌面数字作为“点数”,如红桃6的“点数”就是6(牌面点数与牌的花色无关);

两人摸牌结束时,将所得牌的“点数”相加,若“点数”之和小于或等于10,此时“点数”之和就是“最终点数”,若“点数”之和大于10,则“最终点数”是0;

游戏结束之前双方均不知道对方“点数”;

判定游戏结果的依据是:

“最终点数”大的一方获胜,“最终点数”相等时不分胜负.

现甲、乙均各自摸了两张牌,数字之和都是5,这时桌上还有四张背面朝上的扑克牌,牌面数字分别是4,5,6,7.

(1)若甲从桌上继续摸一张扑克牌,乙不再摸牌,则甲获胜的概率为.

(2)若甲先从桌上继续摸一张扑克牌,接着乙从剩下的扑克牌中摸出一张牌,然后双方不再摸牌,请用树状图或表格表示出这次摸牌后所有可能的结果,再列表呈现甲、乙的“最终点数”,并求乙获胜的概率.

【解析】

(1).

(2)如图:

∴所有可能的结果是(4,5)(4,6)(4,7)(5,4)(5,6)(5,7)(6,4)(6,5)(6,7)

(7,4)(7,5)(7,6)共12种.

5

4

6

7

甲“最终点数”

9

10

11

12

乙“最终点数”

获胜情况

乙胜

甲胜

21.如图1是一副创意卡通圆规,图2是其平面示意图,OA是

支撑臂,OB是旋转臂,使用时,以点A为支撑点,

铅笔芯

端点B可以绕点A旋转作出圆.已知OA=OB=10cm.

(1)当∠AOB=18º

时,求所作圆的半径;

(结果精确到0.01cm)

(2)保持∠AOB=18º

不变,在旋转臂OB末端的铅笔芯折断了一截的情况下,作出的圆与

(1)中所作圆的大小相等,

求铅笔芯折断部分的长度.(结果精确到0.01cm)

(参考数据:

sin9º

≈0.1564,com9º

≈0.9877º

sin18º

≈0.3090,com18º

≈0.9511,可使用科学计算器)图1图2

【解析

(1)图1,作OC⊥AB,

∵OA=OB,OC⊥AB,∴AC=BC,∠AOC=∠BOC=∠AOB=9°

在Rt⊿AOC中,sin∠AOC=,∴AC≈0.1564×

10=1.564,

∴AB=2AC=3.128≈3.13.

∴所作圆的半径是3.13cm.

图1

(2)图2,以点A为圆心,AB长为半径画弧,交OB于点C,

作AD⊥BC于点D;

∵AC=AB,AD⊥BC,

∴BD=CD,∠BAD=∠CAD=∠BAC,

∵∠AOB=18°

OA=OB,AB=AC,

∴∠BAC=18°

∴∠BAD=9°

在Rt⊿BAD中,sin∠BAD=,

∴BD≈0.1564×

3.128≈0.4892,

∴BC=2BD=0.9784≈0.98

∴铅笔芯折断部分的长度约为0.98cm.图2

五、(本大题共10分)

22.【图形定义】

如图,将正n边形绕点A顺时针旋转60°

后,发现旋转前后两图形有另一交点O,连接AO,我们称AO为“叠弦”;

再将“叠弦”AO所在的直线绕点A逆时针旋转60°

后,交旋转前的图形于点P,连接PO,我们称∠OAB为“叠弦角”,⊿AOP为“叠弦三角形”.

【探究证明】

(1)请在图1和图2中选择其中一个证明:

“叠弦三角形”(即⊿AOP)是等

边三角形;

(2)如图2,求证:

∠OAB=∠OAE'.

【归纳猜想】

(3)图1、图2中“叠弦角”的度数分别为,

(4)图n中,“叠弦三角形”等边三角形(填“是”或“不是”);

(5)图n中,“叠弦角”的度数为(用含n的式子表示).

【解析】

(1)如图1∵四ABCD是正方形,

由旋转知:

AD=AD',∠D=∠D'=90°

∠DAD'=∠OAP=60°

∴∠DAP=∠D'AO,

∴⊿APD≌⊿AOD'(ASA)

∴AP=AO,又∠OAP=60°

,∴⊿AOP是等边三角形.

(2)如右图,作AM

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 自然科学 > 化学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1