中考超凡押题江西省中考数学真题试题含答案Word格式文档下载.docx
《中考超凡押题江西省中考数学真题试题含答案Word格式文档下载.docx》由会员分享,可在线阅读,更多相关《中考超凡押题江西省中考数学真题试题含答案Word格式文档下载.docx(16页珍藏版)》请在冰豆网上搜索。
6.如图,在正方形网格中,每个小正方形的边长均相等,网格中三个多边形(分别标记为
,
)的顶点都在网格上,被一个多边形覆盖的网格线中,竖直部分线段长度之和为,水平部分线段长度之和为,则这三个多边形满足的是().
A.只有
B.只有
C.
D.
【答案】C.
二、填空题(本大题共6小题,每小题3分,共18分)
7.计算:
-3+2=_______.
【答案】-1.
8.分解因式________.
【答案】.
9.如图所示,中,绕点A按顺时针方向旋转50°
,得到,则∠的度数是________.
第9题第10题第11题
【答案】17°
.
10.如图所示,在,过点D作AD的垂线,交AB于点E,交CB的延长线于点F,则∠BEF的度数为_______.
【答案】50°
11.如图,直线于点P,且与反比例函数及的图象分别交于点A,B,连接OA,OB,已知的面积为2,则______.
【答案】4.
12.如图,是一张长方形纸片ABCD,已知AB=8,AD=7,E为AB上一点,AE=5,现要剪下一张等腰三角形纸片(AEP),使点P落在长方形ABCD的某一条边上,则等腰三角形AEP的底边长是_______.
【答案】5,5,.如下图所示:
三、(本大题共5小题,每小题6分,共30分)
13.(本题共2小题,每小题3分)
(1)解方程组
【解析】由
得:
,代入
,解得把代入
,
∴原方程组的解是.
(2)如图,Rt中,∠ACB=90°
,将Rt向下翻折,使点A与点
C重合,折痕为DE,求证:
DE∥BC.
【解析】由折叠知:
,∴∠∠,
又点A与点C重合,∴∠,
∴∠∠,
∴∠,
∵∠,∴∠,
∴∠,
∴DE∥BC.
14.先化简,再求值:
+)÷
其中.
【解析】原式=+)
=+)
=-
=
把代入得:
原式=.
15.如图,过点A(2,0)的两条直线分别交轴于B,C,其中点B在原点上方,点C在原点下方,已知AB=.
(1)求点B的坐标;
(2)若
【解析】
(1)在Rt,
∴
∴点B的坐标是(0,3).
(2)∵
∴∴∴
设,把(2,0),代入得:
∴∴的解析式是.
16.为了了解家长关注孩子成长方面的情况,学校开展了针对学生家长的“你最关注孩子哪方面成长”的主题调查,调查设置了“健康安全”,“日常学习”,“习惯养成”,“情感品质”四个项目,并随机抽取甲,乙两班共100位学生家长进行调查,根据调查结果,绘制了如下不完整的条形统计图.
(1)补全条形统计图;
(2)若全校共有3600位家长,据此估计,有多少位家长最关心孩子“情感品质”方面的成长?
(3)综合以上主题调查结果,结合自身现状,你更希望得到以上四个项目中哪方面的关注和
指导?
【解析】
(1)如下图所示:
(2)(4+6)÷
100×
3600=360
∴约有360位家长最关心孩子“情感品质”方面的成长.
(3)没有确定答案,说的有道理即可.
17.如图,六个完全相同的小长方形拼成一个大长方形,AB是其中一个小长方形的对角线,请在大长方形中完成下列画图,要求:
仅用无刻度直尺,
保留必要的画图痕迹.
(1)在图
(1)中画一个45°
角,使点A或点B是这个角的顶点,且AB为这个角的一边;
(2)在图
(2)中画出线段AB的垂直平分线.
【解析】如图所示:
(1)∠BAC=45º
;
(2)OH是AB的垂直平分线.
四、(本大题共4
小题,每小题8分,共32分)
18.如图,AB是⊙O的直径,点P是弦AC上一动点(不与A、C重合),过点P作PE⊥AB,垂足为E,
射线EP交于点F,交过点C的切线于点D.
(1)求证DC=DP
(2)若∠CAB=30°
,当F是的中点时,判断以A、O、C、F为顶点的四边形是什么特殊四边形?
说明理由;
【解析】
(1)如图1
连接OC,∵CD是⊙O的切线,
∴OC⊥CD∴∠OCD=90º
∴∠DCA=90º
-∠OCA.
又PE⊥AB,点D在EP的延长线上,
∴∠DEA=90º
∴∠DPC=∠APE=90º
-∠OAC.
∵OA=OC,∴∠OCA=∠OAC.
∴∠DCA=∠DPC,
∴DC=DP.
(2)如图2四边形AOCF是菱形.图1
连接CF、AF,∵F是的中点,∴
∴AF=FC.
∵∠BAC=30º
,∴=60º
,
又AB是⊙O的直径,∴=120º
∴=60º
∴∠ACF=∠FAC=30º
.
∵OA=OC,∴∠OCA=∠BAC=30º
图2
∴⊿OAC≌⊿FAC(ASA),∴AF=OA,
∴AF=FC=OC=OA,∴四边形AOCF是菱形.
19.如图是一根可伸缩的鱼竿,鱼竿是用10节大小不同的空心套管连接而成,闲置时鱼竿可收缩,完全收缩后,鱼竿的长度的长度即为第1节套管的长度(如图1所示),使用时,可将鱼竿的每一节套管都完全拉伸(如图2所示),图3是这根鱼竿所有套管都处于完全拉伸状态下的平面示意图,已知第1节套管长50cm,第2节套管长46cm,以此类推,每一节套管都比前一节套管少4cm,完全拉伸时,为了使相邻两节套管连接并固定,每相邻两节套管间均有相同长度的重叠,设其长度为cm.
(1)请直接写出第5节套管的长度;
(2)当这根鱼竿完全拉伸时,其长度为311cm,求的值.
图3
【解析】
(1)第5节的套管的长是34cm.(注:
50-(5-1)×
4)
(2)(50+46+…+14)-9x=311
∴320-9x=311,∴x=1
∴x的值是1.
20.甲、乙两人利用扑克牌玩“10点”游戏,游戏规则如下:
将牌面数字作为“点数”,如红桃6的“点数”就是6(牌面点数与牌的花色无关);
两人摸牌结束时,将所得牌的“点数”相加,若“点数”之和小于或等于10,此时“点数”之和就是“最终点数”,若“点数”之和大于10,则“最终点数”是0;
游戏结束之前双方均不知道对方“点数”;
判定游戏结果的依据是:
“最终点数”大的一方获胜,“最终点数”相等时不分胜负.
现甲、乙均各自摸了两张牌,数字之和都是5,这时桌上还有四张背面朝上的扑克牌,牌面数字分别是4,5,6,7.
(1)若甲从桌上继续摸一张扑克牌,乙不再摸牌,则甲获胜的概率为.
(2)若甲先从桌上继续摸一张扑克牌,接着乙从剩下的扑克牌中摸出一张牌,然后双方不再摸牌,请用树状图或表格表示出这次摸牌后所有可能的结果,再列表呈现甲、乙的“最终点数”,并求乙获胜的概率.
【解析】
(1).
(2)如图:
∴所有可能的结果是(4,5)(4,6)(4,7)(5,4)(5,6)(5,7)(6,4)(6,5)(6,7)
(7,4)(7,5)(7,6)共12种.
甲
5
4
6
7
甲“最终点数”
9
10
11
12
乙
乙“最终点数”
获胜情况
乙胜
甲胜
平
∴
21.如图1是一副创意卡通圆规,图2是其平面示意图,OA是
支撑臂,OB是旋转臂,使用时,以点A为支撑点,
铅笔芯
端点B可以绕点A旋转作出圆.已知OA=OB=10cm.
(1)当∠AOB=18º
时,求所作圆的半径;
(结果精确到0.01cm)
(2)保持∠AOB=18º
不变,在旋转臂OB末端的铅笔芯折断了一截的情况下,作出的圆与
(1)中所作圆的大小相等,
求铅笔芯折断部分的长度.(结果精确到0.01cm)
(参考数据:
sin9º
≈0.1564,com9º
≈0.9877º
sin18º
≈0.3090,com18º
≈0.9511,可使用科学计算器)图1图2
【解析
】
(1)图1,作OC⊥AB,
∵OA=OB,OC⊥AB,∴AC=BC,∠AOC=∠BOC=∠AOB=9°
在Rt⊿AOC中,sin∠AOC=,∴AC≈0.1564×
10=1.564,
∴AB=2AC=3.128≈3.13.
∴所作圆的半径是3.13cm.
图1
(2)图2,以点A为圆心,AB长为半径画弧,交OB于点C,
作AD⊥BC于点D;
∵AC=AB,AD⊥BC,
∴BD=CD,∠BAD=∠CAD=∠BAC,
∵∠AOB=18°
OA=OB,AB=AC,
∴∠BAC=18°
∴∠BAD=9°
在Rt⊿BAD中,sin∠BAD=,
∴BD≈0.1564×
3.128≈0.4892,
∴BC=2BD=0.9784≈0.98
∴铅笔芯折断部分的长度约为0.98cm.图2
五、(本大题共10分)
22.【图形定义】
如图,将正n边形绕点A顺时针旋转60°
后,发现旋转前后两图形有另一交点O,连接AO,我们称AO为“叠弦”;
再将“叠弦”AO所在的直线绕点A逆时针旋转60°
后,交旋转前的图形于点P,连接PO,我们称∠OAB为“叠弦角”,⊿AOP为“叠弦三角形”.
【探究证明】
(1)请在图1和图2中选择其中一个证明:
“叠弦三角形”(即⊿AOP)是等
边三角形;
(2)如图2,求证:
∠OAB=∠OAE'.
【归纳猜想】
(3)图1、图2中“叠弦角”的度数分别为,
;
(4)图n中,“叠弦三角形”等边三角形(填“是”或“不是”);
(5)图n中,“叠弦角”的度数为(用含n的式子表示).
【解析】
(1)如图1∵四ABCD是正方形,
由旋转知:
AD=AD',∠D=∠D'=90°
∠DAD'=∠OAP=60°
∴∠DAP=∠D'AO,
∴⊿APD≌⊿AOD'(ASA)
∴AP=AO,又∠OAP=60°
,∴⊿AOP是等边三角形.
(2)如右图,作AM