六年奥数综合练习题十二答案比和比例关系Word文档格式.docx
《六年奥数综合练习题十二答案比和比例关系Word文档格式.docx》由会员分享,可在线阅读,更多相关《六年奥数综合练习题十二答案比和比例关系Word文档格式.docx(16页珍藏版)》请在冰豆网上搜索。
因为E是中点,三角形CDE与三角形CEA面积相等.
三角形ADC与三角形ABC高相等,它们的底边的比AB∶CD=三角形ABC的面积∶三角形ADC的面积
=(10-7)∶(7×
2)=3∶14.
AB∶CD=3∶14.
两数之比,可以看作一个分数,处理时与分数计算几乎一样.三数之比,却与分数不一样,因此是这一节讲述的重点.
例3大、中、小三种杯子,2大杯相当于5中杯,3中杯相当于4小杯.如果记号表示2大杯、3中杯、4小杯容量之和,求与之比.
大杯与中杯容量之比是5∶2=10∶4,
中杯与小杯容量之比是4∶3,
大杯、中杯与小杯容量之比是10∶4∶3.
∶
=(10×
2+4×
3+3×
4)∶(10×
5+4×
4+3×
3)
=44∶75.
两者容量之比是44∶75.
把5∶2与4∶3这两个比合在一起,成为三样东西之比10∶4∶3,称为连比.例3中已告诉你连比的方法,再举一个更一般的例子.
甲∶乙=3∶5,乙∶丙=7∶4,
3∶5=3×
7∶5×
7=21∶35,
7∶4=7×
5∶4×
5=35∶20,
甲∶乙∶丙=21∶35∶20.
花了多少钱?
根据比例与乘法的关系,
连比后是
甲∶乙∶丙=2×
16∶3×
2
=32∶48∶63.
甲、乙、丙三人共花了429元.
例5有甲、乙、丙三枚长短不相同的钉子,甲与乙
,而它们留在墙外的部分一样长.问:
甲、乙、丙的长度之比是多少?
设甲的长度是6份.
∶x=5∶4.
乙与丙的长度之比是
而甲与乙的长度之比是6∶5=30∶25.
甲∶乙∶丙=30∶25∶26.
甲、乙、丙的长度之比是30∶25∶26.
于利用已知条件6∶5,使大部分计算都整数化.这是解比例和分数问题的常用手段.
例6甲、乙、丙三种糖果每千克价分别是22元、30元、33元.某人买这三种糖果,在每种糖果上所花钱数一样多,问他买的这些糖果每千克的平均价是多少元?
解一:
设每种糖果所花钱数为1,因此平均价是
这些糖果每千克平均价是27.5元.
上面解法中,算式很容易列出,但计算却使人感到不易.最好的计算方法是,用22,30,33的最小公倍数330,乘这个繁分数的分子与分母,就有:
事实上,有稍简捷的解题思路.
解二:
先求出这三种糖果所买数量之比.
不妨设,所花钱数是330,立即可求出,所买数量之比是甲∶乙∶丙=15∶11∶10.
平均数是(15+11+10)÷
3=12.
单价33元的可买10份,要买12份,单价是
下面我们转向求比的另一问题,即“比的分配”问题,当一个数量被分成若干个数量,如果知道这些数量之比,我们就能求出这些数量.
例7一个分数,分子与分母之和是100.如果分子加23,分母加32,
新的分数,分子与分母之和是(10+23+32),而分子与分母之比2∶3.因此
例8加工一个零件,甲需3分钟,乙需3.5分钟,丙需4分钟,现有1825个零件要加工,为尽早完成任务,甲、乙、丙应各加工多少个?
所需时间是多少?
三人同时加工,并且同一时间完成任务,所用时间最少,要同时完成,应根据工作效率之比,按比例分配工作量.
三人工作效率之比是
他们分别需要完成的工作量是
所需时间是
700×
3=2100分钟)=35小时.
甲、乙、丙分别完成700个,600个,525个零件,需要35小时.
这是三个数量按比例分配的典型例题.
例9某团体有100名会员,男会员与女会员的人数之比是14∶11,会员分成三个组,甲组人数与乙、丙两组人数之和一样多.各组男会员与女会员人数之比是:
甲:
12∶13,乙:
5∶3,丙:
2∶1,
那么丙有多少名男会员?
甲组的人数是100÷
2=50(人).
乙、丙两组男会员人数是56-24=32(人).
丙组有12名男会员.
上面解题的最后一段,实质上与“鸡兔同笼”解法一致,可以设想,“兔
例10一段路程分成上坡、平路、下坡三段,各段路程长之比依次是1∶2∶3.小龙走各段路程所用时间之比依次是4∶5∶6.已知他上坡时速度为每小时3千米,路程全长50千米.问小龙走完全程用了多少时间?
解一:
通常我们要求出小龙走平路与下坡的速度,先求出走各段路程的速度比.
上坡、平路、下坡的速度之比是
走完全程所用时间
小龙走完全程用了10小时25分.
上面是通常思路下解题.1∶2∶3计算中用了两次,似乎重复计算,最后算式也颇费事.事实上,灵活运用比例有简捷解法.
全程长是上坡这一段长的(1+2+3)=6(倍).如果上坡用的时
设小龙走完全程用x小时.可列出比例式
二、比的变化
已知两个数量的比,当这两个数量发生增减变化后,当然比也发生变化.通过变化的描述,如何求出原来的两个数量呢?
这就是这一节的内容.
例11甲、乙两同学的分数比是5∶4.如果甲少得22.5分,乙多得22.5分,则他们的分数比是5∶7.甲、乙原来各得多少分?
甲、乙两人的分数之和没有变化.原来要分成5+4=9份,变化后要分成5+7=12份.如何把这两种分法统一起来?
这是解题的关键.9与12的最小公倍数是36,我们让变化前后都按36份来算.
5∶4=(5×
4)∶(4×
4)=20∶16.
5∶7=(5×
3)∶(7×
3)=15∶21.
甲少得22.5分,乙多得22.5分,相当于20-15=5份.因此原来
甲得22.5÷
5×
20=90(分),
乙得22.5÷
16=72(分).
原来甲得90分,乙得72分.
我们再介绍一种能解本节所有问题的解法,也就是通过比例式来列方程.
设原先甲的得分是5x,那么乙的得分是4x.根据得分变化,可列出比例式.
(5x-22.5)∶(4x+22.5)=5∶7
即5(4x+22.5)=7(5x-22.5)
15x=12×
22.5
x=18.
甲原先得分18×
5=90(分),乙得18×
4=72(分).
其他球的数量没有改变.
增加8个红球后,红球与其他球数量之比是
5∶(14-5)=5∶9.
在没有球增加时,红球与其他球数量之比是
1∶(3-1)=1∶2=4.5∶9.
因此8个红球是5-4.5=0.5(份).
现在总球数是
现在共有球224个.
本题的特点是两个数量中,有一个数量没有变.把1∶2写成4.5∶9,就是充分利用这一特点.本题也可以列出如下方程求解:
(x+8)∶2x=5∶9.
例13张家与李家的收入钱数之比是8∶5,开支的钱数之比是8∶3,结果张家结余240元,李家结余270元.问每家各收入多少元?
我们采用“假设”方法求解.
如果他们开支的钱数之比也是8∶5,那么结余的钱数之比也应是8∶5.张家结余240元,李家应结余x元.有
240∶x=8∶5,x=150(元).
实际上李家结余270元,比150元多120元.这就是8∶5中5份与8∶3中3份的差,每份是120÷
(5-3)=60.(元).因此可求出
张家收入720元,李家收入450元.
设张家收入是8份,李家收入是5份.张家开支的3倍与李家开支的8倍的钱一样多.
我们画出一个示意图:
张家开支的3倍是(8份-240)×
3.
李家开支的8倍是(5份-270)×
8.
从图上可以看出
5×
8-8×
3=16份,相当于
270×
8-240×
3=1440(元).
因此每份是1440÷
16=90(元).
张家收入是90×
8=720(元),李家收入是90×
5=450(元).
本题也可以列出比例式:
(8x-240)∶(5x-270)=8∶3.
然后求出x.事实上,解方程求x的计算,与解二中图解所示是同一回事,图解有算术味道,而且一些数量关系也直观些.
例14A和B两个数的比是8∶5,每一数都减少34后,A是B的2倍,求这两个数.
减少相同的数34,因此未减时,与减了以后,A与B两数之差并没有变,解题时要充分利用这一点.
8∶5,就是8份与5份,两者相差3份.减去34后,A是B的2倍,就是2∶1,两者相差1.将前项与后项都乘以3,即2∶1=6∶3,使两者也相差3份.现在就知道34是8-6=2(份)或5-3=2(份).因此,每份是34∶2=17.
A数是17×
8=136,B数是17×
5=85.
A,B两数分别是136与85.
本题也可以用例13解一“假设”方法求解,不过要把减少后的2∶1,改写成8∶4.
例15小明和小强原有的图画纸之比是4∶3,小明又买来15张.小强用掉了8张,现有的图画纸之比是5∶2.问原来两人各有多少张图画纸?
充分利用已知数据的特殊性.
4+3=7,5+2=7,15-8=7.原来总数分成7份,变化后总数仍分成7份,总数多了7张,因此,
新的1份=原来1份+1
原来4份,新的5份,5-4=1,因此
新的1份有15-1×
4=11(张).
小明原有图画纸11×
5-15=40(张),
小强原有图画纸11×
2+8=30(张).
原来小明有40张,小强有30张图画纸.
我们也可采用例13解一的“假设”方法.先要将两个比中的前项化成同一个数(实际上就是通分)
4∶3=20∶15
5∶2=20∶8.
但现在是20∶8,因此这个比的每一份是
当然,也可以采用实质上与解方程完全相同的图解法.
解三:
设原来小明有4“份”,小强有3“份”图画纸.
把小明现有的图画纸张数乘2,小强现有的图画纸张数乘5,所得到的两个结果相等.我们可以画出如下示意图:
从图上可以看出,3×
5-4×
2=7(份)相当于图画纸15×
2+8×
5=70(张).
因此每份是10张,原来小明有40张,小强有30张.
例11至15这五个例题是同一类型的问题.用比例式的方程求解没有多大差别.用算术方法,却可以