人教版六年级上册数学概念知识点整理Word文件下载.docx
《人教版六年级上册数学概念知识点整理Word文件下载.docx》由会员分享,可在线阅读,更多相关《人教版六年级上册数学概念知识点整理Word文件下载.docx(13页珍藏版)》请在冰豆网上搜索。
1
3、为了计算简便,能约分的要先约分,再计算。
注意:
当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
4、分数连乘的计算方法:
先约分,就是把所有的分子中可与分母相约的数先约分,再用分子乘分子作积的分子,分母乘分母作积的分母。
(三)、规律:
(乘法中比较大小时)一个数(0除外)乘大于1的数,积大于这个数。
一个数(0除外)乘小于1的数(0除外),积小于这个数。
一个数(0除外)乘1,积等于这个数。
(四)、分数混合运算的运算顺序和整数的运算顺序相同。
(五)、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
乘法交换律:
a×
b=b×
a
乘法结合律:
(a×
b)×
c=a×
(b×
c)
乘法分配律:
(a+b)×
c=ac+bc
二、分数乘法的解决问题
1”的几分之几是多少)
1、画线段图:
(1)两个量的关系:
画两条线段图;
(2)部分和整体的关系:
画一条线段图。
2、找单位“1”:
一般在分率句中分率的前面;
或“占”、“是”、“比”的后面
3、求一个数的几倍:
一个数×
几倍;
求一个数的几分之几是多少:
4、写数量关系式技巧:
几。
几
(1)“的”相当于“×
”“占”、“是”、“比”相当于“=”
(2)分率前是“的”:
单位“1”的量×
分率=分率对应量
(3)分率前是“多或少”的意思:
(1±
分率)=分率对应量
三、倒数
1、倒数的意义:
乘积是1的两个数互为倒数。
..
强调:
互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。
2
(要说清谁是谁的倒数)。
2、求倒数的方法:
(1)、求分数的倒数:
交换分子分母的位置。
(2)、求整数的倒数:
把整数看做分母是1的分数,再交换分子分母的位置。
(3)、求带分数的倒数:
把带分数化为假分数,再求倒数。
(4)、求小数的倒数:
把小数化为分数,再求倒数。
13、1的倒数是1;
0没有倒数。
因为1×
1=1;
0乘任何数都得0,(分母不能为0)0
11ba4、对于任意数a(a¹
0),它的倒数为;
非零整数a的倒数为;
分数的倒数是;
aaab
5、真分数的倒数大于1;
假分数的倒数小于或等于1;
带分数的倒数小于1。
第三单元分数除法
一、分数除法
1、分数除法的意义:
乘法:
因数×
因数=积除法:
积÷
一个因数=另一个因数
分数除法与整数除法的意义相同,表示已知两个因数的积和其中一个因数,求另一个因
数的运算。
2、分数除法的计算法则:
除以一个不为0的数,等于乘这个数的倒数。
3、规律(分数除法比较大小时):
(1)、当除数大于1,商小于被除数;
(2)、当除数小于1(不等于0),商大于被除数;
(3)、当除数等于1,商等于被除数。
4、“[]”叫做中括号。
一个算式里,如果既有小括号,又有中括号,要先算小括号里面的,再算中括号里面的。
二、分数除法解决问题
已知单位“1”的几分之几是多少,求单位“1”的量。
)
1、数量关系式和分数乘法解决问题中的关系式相同:
(1)分率前是“的”:
(2)分率前是“多或少”的意思:
2、解法:
(建议:
最好用方程解答)
(1)方程:
根据数量关系式设未知量为X,用方程解答。
(2对应量÷
对应分率=单位“1”的量
3、求一个数是另一个数的几分之几:
就一个数÷
另一个数
4、求一个数比另一个数多(少)几分之几:
两个数的相差量÷
单位“1”的量或:
①求多几分之几:
大数÷
小数–1
②求少几分之几:
1-小数÷
大数
三、比和比的应用
(一)、比的意义1、比的意义:
两个数相除又叫做两个数的比。
2、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。
比的前项除以后项所得的商,叫做比值。
比的后项不能为0,因为比的后项相当于除法中的除数,除数不能为0.
例如15:
10=15÷
10=3(比值通常用分数表示,也可以用小数或整数表示)2
∶∶∶∶
前项比号后项比值
3、比可以表示两个相同量的关系,即倍数关系。
也可以表示两个不同量的比,得到一个新量。
例:
路程÷
速度=时间。
4
4、求比值的方法:
用比的前项除以比的后项。
5、区分比和比值
比:
表示两个数的倍数关系,可以写成比的形式,也可以用分数表示。
有比的前项和
比的后项
比值:
相当于商,是一个数,是一个结果,可以是整数,分数,也可以是小数。
36、根据分数与除法的关系,两个数的比也可以写成分数形式。
例如3:
2也可以写成,仍2
读作“3:
2”。
7、比和除法、分数的联系:
8、比和除法、分数的区别:
除法是一种运算,分数是一个数,比表示两个数的关系。
9、根据比与除法、分数的关系,可以理解比的后项不能为0。
体育比赛中出现两队的分是2:
0等,这只是一种记分的形式,不表示两个数相除的关系。
(二)、比的基本性质
1、根据比、除法、分数的关系:
商不变的性质:
被除数和除数同时乘或除以相同的数(0除外),商不变。
分数的基本性质:
分数的分子和分母同时乘或除以相同的数时(0除外),分数值不变。
比的基本性质:
比的前项和后项同时乘或除以相同的数(0除外),比值不变。
2、最简整数比:
比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。
3、根据比的基本性质,可以把比化成最简单的整数比。
4.化简比:
①用比的前项和后项同时除以它们的最大公因数。
(1)②两个分数的比:
用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。
③两个小数的比:
向右移动小数点的位置,先化成整数比再化简。
(2)用求比值的方法。
5
如:
15∶10=15÷
10=3=3∶22
5.按比例分配:
把一个数量按照一定的比来进行分配。
这种方法通常叫做按比例分配。
已知两个量之比为a:
b,则设这两个量分别为ax和bx。
6、路程一定,速度比和时间比成反比。
(如:
路程相同,速度比是4:
5,时间比则为5:
4)工作总量一定,工作效率和工作时间成反比。
工作总量相同,工作时间比是3:
2,工作效率比则是2:
3)
(三)和比的应用题有关的概念
1、求每份数的方法
和÷
分数和=每份数相差数÷
相差份数=每份数部分数÷
对应份数=每份数
2、图形求比的常见公式
长方体:
(长+宽+高)的和=棱长和÷
4长方形:
(长+宽)的和=周长÷
3、相遇问题
速度和=路程÷
相遇时间
第四单元圆
一、认识圆
1、圆的定义:
圆是由曲线围成的一种平面图形。
2、圆心:
将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。
一般用字母O表示。
它到圆上任意一点的距离都相等.(画圆切忌别忘记标圆心0)
3、半径:
连接圆心到圆上任意一点的线段叫做半径。
一般用字母r表示。
把圆规两脚分开,两脚之间的距离就是圆的半径。
4、直径:
通过圆心并且两端都在圆上的线段叫做直径。
一般用字母d表示。
直径是一个圆内最长的线段。
5、圆心确定圆的位置,半径确定圆的大小。
(画圆给出半径标半径r=?
,给出直径标直径d=?
)6、在同圆或等圆内,有无数条半径,有无数条直径。
所有的半径都相等,所有的直径都相等。
7.在同圆或等圆内,直径的长度是半径的2倍,半径的长度是直径的
用字母表示为:
d=2r或r=
8、轴对称图形:
d或r=d÷
221。
2
如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。
6
折痕所在的这条直线叫做对称轴。
9、长方形、正方形和圆都是对称图形,都有对称轴。
这些图形都是轴对称图形。
10、只有1一条对称轴的图形有:
角、等腰三角形、等腰梯形、扇形、半圆。
只有2条对称轴的图形是:
长方形
只有3条对称轴的图形是:
等边三角形
只有4条对称轴的图形是:
正方形;
有无数条对称轴的图形是:
圆、圆环。
二、圆的周长
1、圆的周长:
围成圆的曲线的长度叫做圆的周长。
用字母C表示。
2、圆周率实验:
在圆形纸片上做个记号,与直尺0刻度对齐,在直尺上滚动一周,求出圆的周长。
发现一般规律,就是圆周长与它直径的比值是一个固定数(π)。
圆的周长总是它直径的3倍多一些。
3.圆周率:
任意一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做圆周率。
用字母π(pai)表示。
(1)一个圆的周长总是它直径的3倍多一些,这个比值是一个固定的数。
圆周率π是一个无限不循环小数。
在计算时,一般取π≈3.14。
(2)在判断时,圆周长与它直径的比值是π倍,而不是3.14倍。
(3)世界上第一个把圆周率算出来的人是我国的数学家祖冲之。
4C=π
÷
π
或C=2π÷
2π
5、在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。
在一个长方形里画一个最大的圆,圆的直径等于长方形的宽。
6、区分周长的一半和半圆的周长:
(1)周长的一半:
等于圆的周长÷
2计算方法:
2πr÷
2即π
(2)半圆的周长:
等于圆的周长的一半加直径。
计算方法:
rr+2r即5.14r
三、圆的面积
1、圆的面积:
圆所占平面的大小叫做圆的面积。
用字母S表示。
7
2、一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形。
顶点在圆心的角叫做圆心角。
3、圆面积公式的推导:
(1)、用逐渐逼近的转化思想:
体现化圆为方,化曲为直;
化新为旧,化未知为已知,化复
杂为简单,化抽象为具体。
(2)、把一个圆等分(偶数份)成的扇形份数越多,拼成的图像越接近长方形。
(3)、拼出的图形与圆的周长和半径的关系。
圆的半径=长方形的宽
圆的周长的一半=长方形的长
因为:
长方形面积=长×
宽
所以:
圆的面积=圆周长的一半×
圆的半径
S圆=πr×
r=πr2S圆=πr2
2=S÷
π
1S=πr2÷
2或S=1πr2
22
4S=πr2÷
4或S=1
4πr2
4、环形的面积:
(环形的面积等于外圆面积与或
S环=π(R²
-r²
)。
R)和=π(R²
)
计算时,要先算出2个平方数,再相减。
切忌相减后再平方。
5S扇=πr2×
n
360(n表示扇形圆心角的度数)
6、一个圆,半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍数。
而面积扩大或缩小的倍数是这